版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 附錄</b></p><p> Reclamation of forest soils with excavator tillage and organic amendments </p><p><b> Abstract</b></p><p> In early 1994, a r
2、esearch project was initiated to evaluate the success of several techniques aimed at restoring productivity to degraded soils on landings near Vama Vama Creek, 44 km east of Prince George in Central British Columbia. Soi
3、ls were developed from morainal parent materials, the usual surface soil texture was silt loam. Two organic amendments were used in this study, including freshly prepared wood chips and old sawdust. An excavator equipped
4、 with a site preparation rake was used to </p><p> Keywords: Forest soil rehabilitation; British Columbia; Soil disturbance; Soil conservation; Soil productivity; Landing and road rehabilitation </p>
5、<p> 1. Introduction</p><p> Soils on forest landings in central British Columbia are frequently characterized by compaction and nutrient depletion (Carr, 1988a). Degraded soils on landings and other
6、 areas where soils have been disturbed by forest operations often support only meager growth of planted conifers (Arnott et al., 1988). In many cases, soil conditions are so degraded that planting is not attempted on lan
7、dings. </p><p> Restoring soil productivity on degraded soils requires that growth-limiting conditions be alleviated (Bulmer, 1998). Tillage is frequently employed to decompact soils and improve soil produc
8、tivity(Andrus and Froehlich, 1983). On coarse-textured soils, tillage alone may provide significant benefits for growth of conifers such as lodgepole pine, although the long-term consequences of soil nutrient depletion m
9、ay be of concern. On fine-textured soils,tillage results have been inconsistent (Carr, 198</p><p> Several approaches could be employed to re-establish stable soil structure after tillage of fine-textured s
10、oils. A cover crop of deep rooted grasses and legumes could be established to provide organic matter and enhance biological activity in the root zone,thereby encouraging the development of stable soil aggregates. Another
11、 approach that has been proposed involves the incorporation of organic amendments into the surface soil layer to bring organic and mineral soil materials in contact with eac</p><p> This project was develop
12、ed in order to gain more information about methods for restoring productivity to compact and nutrient-poor soils. We evaluated the effect of several combinations of tillage and the addition of organic amendments on soil
13、properties and the establishment and early growth of lodgepole Pine.</p><p> 2. Materials and methods</p><p> 2.1. Study sites</p><p> The study was carried out on three forest l
14、andings 44 km east of Prince George, in the SBSwk1 biogeoclimatic subzone. Soils were developed from morainal parent materials. The usual surface soil texture was silt loam, but in at least one location, a clay-rich B ho
15、rizon was encountered. Coarse fragment content varied between 15 and 40%. The landings were located on level or gently sloping areas. Prior to treatment, there was little vegetation growth on the Landings.</p><
16、;p> 2.2. Experimental design</p><p> Nine treatments were applied to 5 m6 m plots, as described in Table 1. Two control plots were established on each landing. The two organic amendments used were wood
17、chips produced as part of treatments to reduce ®re hazard on the adjacent cutblock, and well-rotted sawdust from an old sawmill site. These materials are typical of soil amendments that may be available at remote re
18、habilitation sites. The chips had typical particle size of 0.1 m 0.05 m 0.005 m,while the sawdust particles had all dim</p><p> 2.3. Treatments</p><p> Treatments were carried out in the summ
19、er of 1994 using an excavator equipped with a five-tooth site preparation rake. Soils were tilled to a depth of 0.50 m, and organic amendments were subsequently shoveled onto the plots to obtain an even distribution of t
20、he material. Amendments were either left as a mulch or subsequently incorporated into the surface 0.20 m of the soil.</p><p> Pine seedlings (PSB 313) were planted at 1 m spacing on all plots. A legume seed
21、 mix was applied in the summer of 1995, but very poor establishment of the legume cover crop occurred due to dry weather.Grass and legume cover has been maintained at a low level throughout the experiment. All plots, inc
22、luding controls, were fertilized in the summer of 1995, using a combination of urea (45-0-0) and a complete NPK fertilizer (18-18-18). Nitrogen was applied at a rate of 225 kg N ha-1, which represents</p><p>
23、; 2.4. Soil analysis and tree productivity measurements</p><p> Composite soil samples were collected in October,1994 from the recently treated plots. Samples were air dried, passed through a 0.002 m sieve
24、, and analyzed at the Pacific Forestry Centre. Soil temperature and moisture were evaluated approximately every two weeks during the summer of 1995 by obtaining three readings with a hand-held thermometer that was insert
25、ed 0.15 m below the mineral soil surface. Tree survival and early growth was monitored after one,two, and three growing seasons. Tree heigh</p><p> 3. Results and discussion</p><p> 3.1. Soil
26、properties</p><p> Soil temperature results are presented in Fig. 1.Even though no analysis was done on the data, and replication was limited, general conclusions appear to be justified. Daytime soil temper
27、atures tended to be lower for mulch treatments compared to soils without added amendments. Plots where organic amendments</p><p> had been tilled into the surface had intermediate soil Temperatures.</p&g
28、t;<p> The sawdust had a much lower C : N ratio than the wood chips (Fig. 2), reflecting higher N concentrations for woody materials that have experienced several years of decomposition. P, Ca, Mg and Fe concentr
29、ations also appeared to be slightly higher in the sawdust material (data not shown). Concentrations of other elements did not appear to vary consistently between the sawdust and wood chip amendments. </p><p>
30、; C : N ratios of surface mineral soils ranged from16.5 to 72.9. Incorporated sawdust increased the C : N ratio of the ®ne fraction of mineral soils compared to plots without added amendments. Incorporated wood chi
31、ps also resulted in a slight increase in mineral soil C : N, even though the wood chips were generally much larger than 0.002 m. Carbon concentrations of surface mineral soils were affected by several factors,including t
32、he presence of buried wood and other organic materials in the untrea</p><p> A 0.05 m layer of wood chips is equivalent to an addition rate of 500 m3 ha-1. The chips had dry bulk density of 152 kg m-3, so t
33、he addition rate is equivalent to 76 000 kg ha-1 of organic matter, or approximately 44 000 kg ha-1 of carbon. Incorporation of wood chips at a rate of 44 000 kg ha-1 of C into the surface 0.20 m of a hypothetical minera
34、l soil with a bulk density of 1200 kg m-3, would increase the C concentration by 1.8%. Only a portion of this C would end up in the ®ne fraction of soi</p><p> 3.2. Tree survival and early growth</p
35、><p> Seedlings on plots with tillage alone produced the most volume over the 3 year period (Fig. 3). Trees growing in plots where sawdust was used as an amendment tended to have more volume after 3 years than
36、 trees growing where wood chips were used as the amendment. Heavy applications of wood chips left as a surface mulch resulted in the lowest volume growth after 3 years. Survival rates were over 90% for all treatments (Fi
37、g. 4). The silty soils were prone to frost heave, and high mortality rates an</p><p> water was present, while lower rates were observed for adjacent plots that had received organic amendments.</p>&
38、lt;p> Although data on soil moisture content are not presented here, several effects of the treatments on soil moisture status and availability to tree roots could be considered as causing the observed growth respons
39、e. Lower soil moisture contents may result from better drainage from areas with raised surfaces, resulting in warmer soil temperatures and increased aeration of the root zone. During dry periods,increased soil organic ma
40、tter contents of soils treated with sawdust or chip incorporation may </p><p> 4. Conclusion</p><p> After 3 years, trees were growing best in areas that were treated by tillage alone, and tre
41、es growing on areas where old sawdust was used as a soil amendment had more volume than trees growing in areas where wood chips were used as a soil amendment. Control plots with no treatment had intermediate growth. Soil
42、 temperature appears to have a large influence on tree growth rates on these plots. Survival after 3 years was high, indicating that commonly available techniques for landing rehabilitation</p><p> Some of
43、the variation in early growth results may relate to differences in initial conditions on the landings.The results also likely reflect the condition of the planting stock shortly after leaving the nursery, along with cond
44、itions at the time of planting. These effects have diminished after 3 years and significant treatment effects were observed. Treatment effects are expected to become even more dramatic in subsequent years as the establis
45、hment effects diminish further.</p><p> The old sawdust had chemical (low C : N) and physical (smaller particle size, expected higher water holding capacity) that may be implicated in the improved growth, b
46、ut the data available to date and analyses that have been carried out so far do not allow further interpretation of the cause for the improved growth of trees on the plots treated with sawdust.</p><p> Ackn
47、owledgements</p><p> Funding for establishment of this project in 1994and 1995 was provided by a grant from Canada's Green Plan to the Canadian Forest Service. Since1996, continued measurements have bee
48、n made possible by the BC Ministry of Forests. Support for this project was also provided by Carrier Lumber. Field assistance during plot installation and for subsequent measurements was provided by Matthew Plotnikoff an
49、d Colin Peters. </p><p> References</p><p> Andrus, C.W., Froehlich, H.A., 1983. An evaluation of four</p><p> implements used to till compacted forest soils in the Pacific</p
50、><p> northwest. Res. Bull. 45. For. Res. Lab., Oregon State</p><p> University, Corvallis, OR.</p><p> Arnott, J.T., Carr, W.W., Waines, A.C., 1988. Establishing forest</p>
51、<p> cover on winter landings in the central interior of British</p><p> Columbia. For. Chron. 64, 121±126.</p><p> Bulmer, C.E., 1998. Soil rehabilitation in British Columbia: a<
52、;/p><p> problem analysis. Land Manage. Handbook 44. BC Min. For.,</p><p> Victoria, B.C.</p><p> Carr, W.W., 1988a. Nutritional and soil compaction aspects of</p><p>
53、 establishing forest cover on winter landings in the Fort St.</p><p> James area.. FRDA Report 047. BC Min. For. and Can. Fore.</p><p> Serv., Victoria, BC.</p><p> Carr, W.W., 1
54、988b. The rehabilitation of degraded forest soil in</p><p> British Columbia: an overview. In: Lousier, J.D., Still, G.W.</p><p> (Eds.), Degradation of forested land: forest soils at risk. Pr
55、oc.</p><p> 10th BC Soil Sci. Workshop, February, 1986. Land Manage.</p><p> Rep. No. 56. BC Min. For., Victoria, BC, pp.197±204.</p><p> McNabb, D.H., 1994. Tillage of comp
56、acted haul roads and landings</p><p> in the boreal forests of Alberta. Canada. For. Ecol. Manage. 66,</p><p><b> 179±194.</b></p><p> Tisdall, J.M., Oades, J.M.
57、, 1982. Organic matter and water stable</p><p> aggregates in soils. J. Soil Sci. 33, 141±163. </p><p> 挖掘機(jī)開墾森林土壤與修正方案</p><p> BC省的森林,卡拉瑪卡研究站,水庫路3401,弗農(nóng),加拿大不列顛哥倫比亞省c7 V1
58、B 2 審核1999年10月6日。</p><p><b> 摘要:</b></p><p> 在1994年初發(fā)起的一個(gè)研究項(xiàng)目評(píng)估成功的幾種技術(shù),旨在恢復(fù)瓦馬瓦馬溪以東44公里附近中環(huán)不列顛哥倫比亞省喬治王子上岸退化土壤生產(chǎn)力。土壤從材料開發(fā),通常表面土壤質(zhì)地為粉質(zhì)壤土。兩個(gè)有機(jī)修訂這項(xiàng)研究中,包括新制的木屑和舊木屑。一臺(tái)挖掘機(jī)配備整地耙來耕地土壤深度0.50米
59、。隨后添加有機(jī)添加物的地塊,要么離開覆蓋或納入0.20米的土壤表面。氮225公斤每公頃的速度被應(yīng)用到這次研究,據(jù)估計(jì)500±700公斤公頃的約三分之一,被要求固定應(yīng)用為在木質(zhì)殘留物的分解。挽救措施是處理好了,但3年后,樹木的長(zhǎng)勢(shì)最好的領(lǐng)域分別用單獨(dú)耕作。老鋸末作為一項(xiàng)修正案量比在木片的地方已被用于生長(zhǎng)的樹木有更多的樹木生長(zhǎng)。沒有治理的對(duì)照地塊中間有增長(zhǎng)。土壤溫度和化學(xué)性質(zhì)進(jìn)行了其對(duì)經(jīng)濟(jì)增長(zhǎng)的影響評(píng)估。#2000 愛思唯爾科學(xué)B
60、V保留所有權(quán)利</p><p><b> 1.介紹:</b></p><p> 眾多的特點(diǎn),在不列顛哥倫比亞省中部的森林著陸土壤板結(jié),養(yǎng)分耗竭(卡爾,1988a)。退化的土壤上和其他地區(qū)的土壤已經(jīng)不妥善的森林經(jīng)營活動(dòng)往往只支持種植針葉樹(Arnott等人,1988)輕微增長(zhǎng)。在許多情況下,土壤條件退化,種植不試圖上岸。</p><p>
61、土壤生產(chǎn)力恢復(fù)退化的土壤上生長(zhǎng)限制條件得到緩解(布爾默,1998)。經(jīng)常采用松軟土壤耕作,提高土壤的生產(chǎn)力(安德魯斯和弗勒利希,1983)。在粗質(zhì)地的土壤,耕作可提供黑松等針葉樹的增長(zhǎng),雖然土壤養(yǎng)分長(zhǎng)期枯竭的后果可能會(huì)是關(guān)注的問題。在®NE質(zhì)感土壤,耕作結(jié)果不一致(卡爾,1988B;麥克納布,1994年),部分原因是一個(gè)狹窄的范圍內(nèi)可以進(jìn)行有效的耕作,水分含量,而且還因?yàn)榉€(wěn)性團(tuán)聚體需要防止耕作后不久再次出現(xiàn)樹體狀況不佳。穩(wěn)定的
62、土壤團(tuán)聚形成土壤礦物顆粒時(shí),建立土壤有機(jī)質(zhì)(蒂斯和奧德的,1982年)。</p><p> 有幾種方法可以重新建立穩(wěn)定的土壤后免耕土壤結(jié)構(gòu)。根深蒂固的牧草和豆科植物可以建立覆蓋作物根區(qū)域中提供有機(jī)質(zhì)和提高生物活性,從而鼓勵(lì)發(fā)展穩(wěn)定的土壤團(tuán)聚體。已經(jīng)提出的另一種涉及到土壤表層帶來土壤有機(jī)和無機(jī)材料相互接觸方法,并有可能鼓勵(lì)摻入有機(jī)物穩(wěn)性團(tuán)聚體的形成。 </p><
63、;p> 這個(gè)項(xiàng)目是為了獲得更多的信息的方法恢復(fù)緊湊、貧營養(yǎng)的土壤生產(chǎn)力。我們對(duì)土壤理化性質(zhì)評(píng)估性耕作,并建立和早期生長(zhǎng)的黑松添加有機(jī)添加物的幾種組合的效果。</p><p><b> 材料與方法</b></p><p><b> 2.1研究網(wǎng)站</b></p><p> 這項(xiàng)研究進(jìn)行了三個(gè)森林著陸喬治王子市以
64、東44公里,在生物地球化學(xué)氣候分區(qū)。土壤開發(fā)的材料。通常的表面土壤質(zhì)地為粉砂壤土,但至少有一個(gè)位置,遇到富含粘土的B層。粗碎屑含量介于15%和40%。著陸位于水平或平緩地區(qū)。處理之前,很少有植有生長(zhǎng)。</p><p><b> 2.2實(shí)驗(yàn)設(shè)計(jì)</b></p><p> 9個(gè)5米x6米處理應(yīng)用,如表1中所述。兩個(gè)控制地上建立每次著陸。兩個(gè)有機(jī)添加物使用木屑作為處理的
65、一部分減少®相鄰的切口塊重再次危害,以及舊鋸木廠腐爛的木屑。這些材料是典型的土壤改良劑,可能是遠(yuǎn)程康復(fù)站點(diǎn)。該模片有典型的顆粒尺寸為0.1mx 0.05米x 0.005米,而木屑顆粒有所有尺寸小于0.003米。</p><p><b> 2.3治理</b></p><p> 在1994年的夏天進(jìn)行治理使用的挖掘機(jī)配備一個(gè)®VE齒整地耙。土壤耕種
66、的深度0.50米,有機(jī)修正隨后鏟到地塊,以獲得均勻分布的材料。修訂要么離開覆蓋或隨后并入0.20米的土壤表面。所有種植松苗(PSB313)的地塊樹苗在1米的間距。豆科植物種子組合被應(yīng)用在1995年的夏天,但是非常貧瘠的土地由豆科植物建立作物覆蓋,由于天氣干燥,在整個(gè)實(shí)驗(yàn)草和豆科植物一直維持在一個(gè)較低的水平。在1995年的夏天,所有的細(xì)節(jié),包括控制,受精使用尿素(45-0-0)和一個(gè)完整的氮磷鉀復(fù)合肥(18-18-18)的組合。適用于氮?dú)?/p>
67、225公斤每公頃,據(jù)估計(jì)約占500±700 KGN公頃比例的三分之一,以固定在分解的木質(zhì)殘留物作為補(bǔ)償。該地塊收到50公斤K2O和P2O5每公頃。</p><p> 2.4土壤分析和樹生產(chǎn)力測(cè)量</p><p> 1994年10月采集復(fù)合土樣,從最近處理的情況。樣品在空氣中干燥后,通過0.002篩,并在起搏®C林業(yè)中心分析了。土壤溫度和濕度在1995年夏天進(jìn)行了大約
68、每?jī)蓚€(gè)星期與手持式溫度計(jì)評(píng)估,插入0.15米以下的礦質(zhì)土壤表面獲得三讀通過。一個(gè),兩個(gè),三個(gè)生長(zhǎng)季節(jié)后,林木成活率和早期生長(zhǎng)監(jiān)測(cè)。樹高和卡尺,隨著評(píng)估確定樹的條件。立木蓄積量被確定為一個(gè)圓柱體的體積與基地的樹苗直徑等尺寸,高度等于苗高。</p><p><b> 結(jié)果與探討</b></p><p><b> 3.1土壤性質(zhì)</b></p
69、><p> 土壤溫度的結(jié)果示于圖中。雖然沒有分析1.上的數(shù)據(jù),和復(fù)制是有限的,一般的結(jié)論是正當(dāng)?shù)?。白天土壤溫度與不加修正的土壤覆蓋相比往往會(huì)有較低的治理效果。有機(jī)修正耕種的地塊中間土壤溫度。</p><p> 已經(jīng)歷了數(shù)年的分解,證明鋸末比木片的C:N比率低得多(圖2),木質(zhì)材料表現(xiàn)出了較高的氮濃度。鋸末材料中磷,鈣,鎂,鐵含量也顯得略高(數(shù)據(jù)未示出)。其他元素的濃度并沒有出現(xiàn)變化木屑和木
70、片之間一致。</p><p> 土壤表面礦質(zhì)C:N比率從16.5到72.9不等。與不加修訂地塊相比加入鋸末增加的C:N比。加入木片也導(dǎo)致礦質(zhì)土壤C:N略有增加,即使木片一般遠(yuǎn)大于0.002米的。表面礦質(zhì)土壤的碳含量受多種因素影響,包括對(duì)土壤碳濃度的有機(jī)添加物的效果的存在下埋木材和其它有機(jī)材料在未經(jīng)處理的降解。降解在一個(gè)未經(jīng)處理的土壤礦質(zhì)土壤表面,高C濃度可能陰沉木和森林地板材料的存在造成。</p>
71、<p> 木片是0.05米層相當(dāng)于加入速率500立方米每公頃的。該芯片有干容重152公斤每立方米,所以除率相當(dāng)于76 000公斤每公頃有機(jī)物,或約44萬公斤的碳每公頃。加入木屑44 000公斤的每公頃,入面0.20米的一個(gè)假設(shè)的礦質(zhì)土壤體積密度為1200公斤每立方米的速度,治理幾年后的土壤中將增加C的濃度為1.8% ®NE分?jǐn)?shù),只有一小部分,這個(gè)C會(huì)耗盡,但它有望成為土壤碳循環(huán)的一部分,和部分最終將有助于
72、4;NE土有機(jī)質(zhì)含量。相比之下,鋸末的摻入會(huì)預(yù)計(jì)將導(dǎo)致總碳濃度變化相似,但土分?jǐn)?shù)早晚將出現(xiàn),因?yàn)樽畛醯牧奖饶拘间從┬〉枚?。正如預(yù)期的那樣,圖2鋸末表面被納入該地塊具有較高的礦質(zhì)土壤表面的有機(jī)物質(zhì)水平高于其他處理。其他營養(yǎng)物質(zhì)濃度在表面礦質(zhì)土壤中是可變的,并沒有表現(xiàn)出明顯的治理的趨勢(shì)所產(chǎn)生。</p><p> 3.2樹的生存和早期生長(zhǎng)</p><p> 單獨(dú)耕作地塊上幼苗產(chǎn)生量超過3年
73、期(圖3)。樹木生長(zhǎng)在木屑被用來作為一個(gè)修正的重復(fù)中往往比生長(zhǎng)的樹木在3年后的木片被用作修正有更大的體積。離開表面覆蓋的木片應(yīng)用在3年后的最低量增長(zhǎng)。所有的治理生存率分別為90%以上(圖4)。粉砂質(zhì)土壤很容易凍脹,在潮濕的地區(qū)滲水高死亡率和幼苗霜凍造成的損害上觀察控制和僅耕種的地塊,而觀察相鄰地塊有機(jī)修訂已經(jīng)收到較低的利率。</p><p><b> 圖一 </b></p&g
74、t;<p> 對(duì)土壤水分含量的數(shù)據(jù),這里就不介紹了,幾個(gè)方面的影響可以被視為導(dǎo)致對(duì)土壤水分的狀態(tài)和可用性樹根響應(yīng)生長(zhǎng)的處理。土壤水分含量較低,可能從地區(qū)有凸起的表面導(dǎo)致在溫暖的土壤溫度和增加根區(qū)的曝氣更好的排水系統(tǒng)。在干旱期間,增加土壤有機(jī)質(zhì)含量與鋸末或芯片摻入土壤處理可提高土壤水分儲(chǔ)留,并為植物提供水分。表面覆蓋物也可以提高保濕性,雖然絕緣覆蓋物表面,可能會(huì)導(dǎo)致較低的溫度下。有幾個(gè)因素,包括夏季干旱的程度,在某年內(nèi)將確
75、定土壤水分存儲(chǔ)或改變幼苗生長(zhǎng)的熱性能變化的益處或不利影響。在一般情況下,只有輕微的夏季水分在SBSwk1。</p><p><b> 圖二</b></p><p><b> 圖四</b></p><p><b> 結(jié)論</b></p><p> 三年后,樹木的長(zhǎng)勢(shì)最好的
76、治理領(lǐng)域,單獨(dú)耕作,樹木生長(zhǎng)的地方老鋸末被用作土壤改良劑有更多的劑量比在木屑被用作土壤改良劑的地方樹木生長(zhǎng)。沒有治理的對(duì)照地塊中間有增長(zhǎng)。土壤溫度出現(xiàn)在這些地塊上對(duì)樹木生長(zhǎng)率有很大的影響。三年后存活率高,早期生長(zhǎng)的針葉樹苗適合的狀態(tài),表明常用的技術(shù)著陸康復(fù)可以恢復(fù)土壤條件。</p><p> 在早期生長(zhǎng)的結(jié)果中的變化中的某些的可能涉及到同上的地方.在初始條件有區(qū)別的搜尋結(jié)果,也很可能在離開的兒童起居室中,沿與上
77、面的時(shí)間條件種植下后,短期內(nèi)反映的種植條件。這些影響已經(jīng)減少3年后不能觀察療效。預(yù)計(jì)在隨后的幾年中變得更為顯著地治理效果,效果更進(jìn)一步。</p><p> 老鋸末有化學(xué)(低C:N)和物理(粒徑較小,預(yù)計(jì)較高的持水能力)可能會(huì)牽連改進(jìn)增長(zhǎng),是已開展至今的日期和分析的數(shù)據(jù)不允許進(jìn)一步改善樹木生長(zhǎng)鋸末治理地塊的原因解釋。</p><p><b> 致謝:</b><
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--關(guān)于液壓挖掘機(jī)
- 液壓挖掘機(jī)畢業(yè)設(shè)計(jì)外文翻譯
- 液壓挖掘機(jī)畢業(yè)設(shè)計(jì)外文翻譯
- 液壓挖掘機(jī)畢業(yè)設(shè)計(jì)外文翻譯
- 外文翻譯---挖掘機(jī)三維造型與運(yùn)動(dòng)仿真
- 液壓挖掘機(jī)畢業(yè)設(shè)計(jì)外文翻譯譯文
- 液壓挖掘機(jī)畢業(yè)設(shè)計(jì)外文翻譯英文
- 液壓挖掘機(jī)畢業(yè)設(shè)計(jì)外文翻譯.pdf
- 液壓挖掘機(jī)畢業(yè)設(shè)計(jì)外文翻譯.pdf
- 液壓挖掘機(jī)畢業(yè)設(shè)計(jì)外文翻譯.pdf
- 液壓挖掘機(jī)畢業(yè)設(shè)計(jì)外文翻譯.pdf
- [學(xué)習(xí)]兒童游樂挖掘機(jī)兒童挖掘機(jī)游樂挖掘機(jī)
- 挖掘機(jī)技能競(jìng)賽方案
- 外文翻譯--TBM隧道挖掘機(jī)仿真運(yùn)動(dòng).doc
- 外文翻譯--TBM隧道挖掘機(jī)仿真運(yùn)動(dòng).doc
- 森林土壤學(xué)練習(xí)題
- 挖掘機(jī)
- 挖掘機(jī)
- 單斗液壓挖掘機(jī)畢業(yè)設(shè)計(jì)(含外文翻譯)
- 挖掘機(jī)
評(píng)論
0/150
提交評(píng)論