基礎(chǔ)防雷外文資料翻譯_第1頁(yè)
已閱讀1頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p>  畢業(yè)設(shè)計(jì)(論文)外文資料翻譯</p><p>  注:請(qǐng)將該封面與附件裝訂成冊(cè)。附件1:外文資料翻譯譯文</p><p>  基礎(chǔ)防雷簡(jiǎn)介 閃電是一個(gè)反復(fù)無(wú)常,隨機(jī)和不可預(yù)測(cè)的事件。它的物理特征包括:電流超過(guò)400 kA;溫度超過(guò)50000華氏度,速度接近或超過(guò)三分之一的光速。自2000年以來(lái)持續(xù)雷擊地球約100次每秒。美國(guó)保險(xiǎn)公司的資料顯示每57索賠有一

2、次是因?yàn)槔讚魮p壞。這些數(shù)據(jù)還不包括商業(yè),政府和工業(yè)雷電造成的損失。在美國(guó)每年因雷電造成的火災(zāi)超過(guò)26000起,財(cái)產(chǎn)損失在5-6億美元。 地球上的雷擊現(xiàn)象,按目前的技術(shù)角度來(lái)看,遵循一個(gè)近似的規(guī)律:1。從頂層雷云朝地球的向下脈沖,尋求電氣地面目標(biāo)。2。地基對(duì)象(圍欄,樹(shù)木,草葉,建筑,避雷針,等等)對(duì)此事件發(fā)出不同程度的電力活動(dòng)。從這些地基對(duì)象向上發(fā)送電力波動(dòng),在離地面幾十米的位置,會(huì)出現(xiàn)一個(gè)“聚集區(qū)”加劇當(dāng)?shù)氐碾妶?chǎng)。3。當(dāng)

3、帶有異種電荷的雷云相遇,相當(dāng)于電路“開(kāi)關(guān)”被關(guān)閉,于是有電流流過(guò)。我們就會(huì)看到閃電。</p><p>  閃電效果可以直接也可能是間接的。直接影響是有電阻發(fā)熱,出現(xiàn)電弧并可能燃燒起來(lái)。間接影響是,多數(shù)時(shí)候?qū)﹄娙荩姼谐霈F(xiàn)電磁影響。在絕對(duì)意義上實(shí)現(xiàn)閃電的防護(hù)是不可能的,只能使其產(chǎn)生的影響減少,可以由一個(gè)整體性,系統(tǒng)性的風(fēng)險(xiǎn)緩解辦法來(lái)實(shí)現(xiàn)保護(hù)。下面對(duì)通用條款進(jìn)行描述。</p><p>  避

4、雷針 從富蘭克林研究雷電開(kāi)始,就使用避雷針進(jìn)行建筑物防雷并引流接地。避雷針,是現(xiàn)在最常用的防雷裝置,根據(jù)建筑物不同的地點(diǎn),高度和形狀,使用合適類(lèi)型的避雷針來(lái)達(dá)到設(shè)計(jì)要求。一些公共事業(yè)如架空線(xiàn)、變電所喜歡屏蔽電線(xiàn)。在某些情況下,沒(méi)有任何避雷裝置的使用是最適當(dāng)?shù)摹?高空避雷裝置的使用可能會(huì)改變閃電的動(dòng)作。在等效電力場(chǎng)所,鈍尖桿被看作是一種有效的避雷針類(lèi)型。高空防雷裝置的設(shè)計(jì)和性能是一個(gè)有爭(zhēng)議的并尚未解決的問(wèn)題。因?yàn)椤跋?/p>

5、閃電是一個(gè)值得懷疑的辦法。進(jìn)一步的研究和試驗(yàn)仍在進(jìn)行中,以便更充分地了解各種高空防雷裝置的可行性。</p><p>  引下線(xiàn)連接 引下線(xiàn)應(yīng)通過(guò)一個(gè)安全的方式安裝,在已知電路外面敷設(shè)。引下線(xiàn)不可以涂漆,因?yàn)檫@樣會(huì)增加阻抗。漸進(jìn)彎曲半徑最小為八英寸,應(yīng)采取避免閃絡(luò)的方式。建筑鋼材可用于與大地連接的引下線(xiàn),要保證所有的金屬建材有效的連接成網(wǎng)。所有金屬導(dǎo)體應(yīng)進(jìn)入連接,如燃?xì)饧八艿?,信?hào)線(xiàn),空調(diào)管道,鐵路軌道,橋

6、式起重機(jī)等應(yīng)被接地系統(tǒng)。各金屬導(dǎo)體的連接應(yīng)該是熱連接,而不應(yīng)是機(jī)械連接。機(jī)械連接時(shí)容易受到腐蝕和物理傷害。接地 接地系統(tǒng)必須面對(duì)地球的低阻抗和阻力。一個(gè)閃電的脈沖光譜研究揭示閃電既有高頻率也有低頻率的內(nèi)容。高頻率性能是頻譜變化速度非常迅速的,達(dá)到10微秒的峰值電流。低頻率分量延續(xù)時(shí)間長(zhǎng),是一種高能量后續(xù)的沖擊電流。接地系統(tǒng)是將雷電脈沖傳入大地來(lái)減少危害的。 單點(diǎn)接地系統(tǒng)是將所有內(nèi)部設(shè)備連接到一根主母線(xiàn)在連接到外部接地

7、系統(tǒng)。接地系統(tǒng)的設(shè)計(jì)應(yīng)以減少交流阻抗和直流電阻為前提。地球的零電位是防雷接地最重要的原因。采用徑向技術(shù)可以降低阻抗,能讓雷電能量發(fā)散,因?yàn)槊總€(gè)接地導(dǎo)體的都有一個(gè)電壓梯度,他們應(yīng)該被連接到地面設(shè)施。</p><p>  瞬變和浪涌

8、 </p><p>  普通熔斷器和斷路器并沒(méi)有與閃電感應(yīng)瞬變的能力。避雷設(shè)備可以是電流分散,濾波器的特定頻率,鉗位組合等都是

9、可以實(shí)現(xiàn)這個(gè)功能的組合。電壓鉗位器件可以處理極高峰值的浪涌,以及具有減少極快的上升沿瞬態(tài)的能力。采用壁壘防御是一種需要謹(jǐn)慎的行為:其可以保護(hù)主面板,保護(hù)所有相關(guān)二次配電盤(pán),保護(hù)一切有價(jià)值的插件設(shè)備,如過(guò)程控制儀表,計(jì)算機(jī),打印機(jī),火災(zāi)報(bào)警,數(shù)據(jù)記錄和SCADA系統(tǒng)設(shè)備等。此外,還可以保護(hù)傳入和傳出的數(shù)據(jù)和信號(hào)線(xiàn)。保護(hù)那些服務(wù)的主要資產(chǎn),如井口,遠(yuǎn)程安全報(bào)警,閉路電視攝像頭,高桅桿照明,空調(diào)通風(fēng)等穿透一個(gè)結(jié)構(gòu)從另一個(gè)不應(yīng)被忽略的需要防雷的

10、設(shè)施中工作的設(shè)備。 安裝電涌抑制器的最小的引線(xiàn)長(zhǎng)度取決于各自的電氣面板??焖偕仙龝r(shí)間條件下,電纜電感成為重要的高瞬態(tài)電壓可以使用較長(zhǎng)的引線(xiàn)。</p><p><b>  檢測(cè)</b></p><p>  閃電探測(cè)儀,在不同的成本和技術(shù)條件下,有時(shí)是可以起到雷電早期預(yù)警的作用的。一個(gè)最普通的應(yīng)用是,被用來(lái)作為AC線(xiàn)路電源斷開(kāi)到雷電到來(lái)之前的備用電源。用戶(hù)應(yīng)提防過(guò)

11、度依靠設(shè)備,因?yàn)檫@不是每次都可用的。</p><p><b>  教育</b></p><p>  所有人都應(yīng)該接受防雷安全教育。在出現(xiàn)雷暴的時(shí)候,在室內(nèi)或汽車(chē)?yán)锏臅r(shí)候,應(yīng)避免接觸水和其他一些的金屬物件;避免在一些制高點(diǎn)行車(chē),不要在孤立的樹(shù)木下面躲雨;不要在下雨的時(shí)候在室外打電話(huà)。如果在戶(hù)外時(shí)附近有閃電擊中,應(yīng)該躲到安全的位置,丟掉手中的金屬物體,雙腳蜷縮在一起,低著

12、頭,雙手捂在耳朵上,以避免雷聲震壞耳膜。 綜述需要申明的重要的一點(diǎn),上述所有的內(nèi)容都是通過(guò)安全防雷的角度分析的。沒(méi)有絕對(duì)理想的防雷措施。因?yàn)殚W電可能超出每一個(gè)人的想象。系統(tǒng)化的防雷措施是一種有效減少雷電危害的方法。</p><p>  參考文獻(xiàn)1。 2003年空氣污染指數(shù),對(duì)所產(chǎn)生的靜電,火災(zāi)2008閃電和雜散電流,美國(guó)石油研究所,華盛頓特區(qū),1991年12月。2。 Golde,G.H.,閃電,

13、學(xué)術(shù)出版社,紐約,1977。3。哈瑟,體育,低電壓系統(tǒng),彼得Peregrinus出版社,倫敦,1992年過(guò)電壓保護(hù)。4。 Hovath,蒂博爾,防雷,威利計(jì)算,紐約,1991年。5。 IEEE標(biāo)準(zhǔn)1100,供電和敏感的電子設(shè)備的接地,符合IEEE,紐約州。 1992。6。肯尼迪航天中心,用于連接和接地,工程開(kāi)發(fā)局,約翰肯尼迪航天中心,美國(guó)航天局,1991年標(biāo)準(zhǔn)。7。莫里斯,i,et.al.,火箭引雷研究的重要資產(chǎn),在行業(yè)的應(yīng)用

14、,卷匯刊保護(hù)。 30,第3號(hào),5 / 1994年6月。8。森德,E.D.輸電系統(tǒng)接地傳導(dǎo)效應(yīng),四凡諾斯特蘭有限公司,紐約,1949年。9。湯,四,波動(dòng)現(xiàn)象,多佛出版社,臺(tái)北。10。烏曼,馬丁,閃電,多佛出版社,紐約,1984。11。 Viemeister,彼得,閃電書(shū),麻省理工學(xué)院出版社,劍橋大學(xué)碩士,1972年</p><p><b>  附件2: </b></p>

15、<p>  Fundamentals of Lightning Protection</p><p>  Introduction</p><p>  Lightning is a capricious, random and unpredictable event. Its' physical characteristics include current leve

16、ls sometimes in excess of 400 kA, temperatures to 50,000 degrees F., and speeds approaching one third the speed of light. Globally, some 2000 on-going thunderstorms cause about 100 lightning strikes to earth each second.

17、 USA insurance company information shows one homeowner's damage claim for every 57 lightning strikes. Data about commercial, government, and industrial lightning-caused lo</p><p>  The phenomenology of l

18、ightning strikes to earth, as presently understood, follows an approximate behavior:</p><p>  1. The downward Leaders from a thundercloud pulse towards earth seeking out active electrical ground targets.<

19、/p><p>  2. Ground-based objects (fences, trees, blades of grass, corners of buildings, people, lightning rods, etc., etc.) emit varying degrees of electric activity during this event. Upward Streamers are laun

20、ched from some of these objects. A few tens of meters off the ground, a "collection zone" is established according to the intensified local electrical field.</p><p>  3. Some Leader(s) likely will

21、connect with some Streamer(s). Then, the "switch" is closed and the current flows. We see lightning.</p><p>  Lightning effects can be direct and/or indirect. Direct effects are from resistive (ohm

22、ic) heating, arcing and burning. Indirect effects are more probable. They include capacitive, inductive and magnetic behavior. Lightning "prevention" or "protection" (in an absolute sense) is impossib

23、le. A diminution of its consequences, together with incremental safety improvements, can be obtained by the use of a holistic or systematic hazard mitigation approach, described below in generic terms.</p><p&g

24、t;  Lightning Rods</p><p>  In Franklin's day, lightning rods conducted current away from buildings to earth. Lightning rods, now known as air terminals, are believed to send Streamers upward at varying

25、distances and times according to shape, height and other factors. Different designs of air terminals may be employed according to different protection requirements. For example, the utility industry prefers overhead shie

26、lding wires for electrical substations. In some cases, no use whatsoever of air terminals is appropriate </p><p>  Air terminal design may alter Streamer behavior. In equivalent e-fields, a blunt pointed rod

27、 is seen to behave differently than a sharp pointed rod. Faraday Cage and overhead shield designs produce yet other effects. Air terminal design and performance is a controversial and unresolved issue. Commercial claims

28、of the "elimination" of lightning deserve a skeptical reception. Further research and testing is on-going in order to understand more fully the behavior of various air terminals.</p><p>  Downcondu

29、ctors, Bonding and Shielding</p><p>  Downconductors should be installed in a safe manner through a known route, outside of the structure. They should not be painted, since this will increase impedance. Grad

30、ual bends (min. eight inch radius) should be adopted to avoid flashover problems. Building steel may be used in place of downconductors where practical as a beneficial part of the earth electrode subsystem.</p>&l

31、t;p>  Bonding assures that all metal masses are at the same electrical potential. All metallic conductors entering structures (AC power, gas and water pipes, signal lines, HVAC ducting, conduits, railroad tracks, over

32、head bridge cranes, etc.) should be integrated electrically to the earth electrode subsystem. Connector bonding should be thermal, not mechanical. Mechanical bonds are subject to corrosion and physical damage. Frequent i

33、nspection and ohmic resistance measuring of compression and mechanica</p><p>  Shielding is an additional line of defense against induced effects. It prevents the higher frequency electromagnetic noise from

34、interfering with the desired signal. It is accomplished by isolation of the signal wires from the source of noise.</p><p><b>  Grounding</b></p><p>  The grounding system must addres

35、s low earth impedance as well as low resistance. A spectral study of lightning's typical impulse reveals both a high and a low frequency content. The high frequency is associated with an extremely fast rising "f

36、ront" on the order of 10 microseconds to peak current. The lower frequency component resides in the long, high energy "tail" or follow-on current in the impulse. The grounding system appears to the lightni

37、ng impulse as a transmission line where wave propaga</p><p>  A single point grounding system is achieved when all equipment within the structure(s) are connected to a master bus bar which in turn is bonded

38、to the external grounding system at one point only. Earth loops and differential rise times must be avoided. The grounding system should be designed to reduce ac impedance and dc resistance. The shape and dimension of th

39、e earth termination system is more important a specific value of the earth electrode. The use of counterpoise or "crow's foot" radial t</p><p>  Cathodic reactance should be considered during t

40、he site analysis phase. Man-made earth additives and backfills are useful in difficult soils circumstances: they should be considered on a case-by-case basis where lowering grounding impedances are difficult an/or expens

41、ive by traditional means. Regular physical inspections and testing should be a part of an established preventive maintenance program.</p><p>  Transients and Surges</p><p>  Ordinary fuses and c

42、ircuit breakers are not capable of dealing with lightning-induced transients. Lightning protection equipment may shunt current, block energy from traveling down the wire, filter certain frequencies, clamp voltage levels,

43、 or perform a combination of these tasks. Voltage clamping devices capable of handling extremely high amperages of the surge, as well as reducing the extremely fast rising edge (dv/dt and di/dt) of the transient are reco

44、mmended. Adopting a fortress defense aga</p><p>  Surge suppressors should be installed with minimum lead lengths to their respective panels. Under fast rise time conditions, cable inductance becomes importa

45、nt and high transient voltages can be developed across long leads.</p><p>  In all instances, use high quality, high speed, self-diagnosing protective components. Transient limiting devices may use a combina

46、tion of arc gap diverters-metal oxide varistor-silicon avalanche diode technologies. Hybrid devices, using a combination of these technologies, are preferred. Know your clamping voltage requirements. Confirm that your ve

47、ndor's products have been tested to rigid ANSI/IEEE/ISO9000 test standards. Avoid low-priced, bargain products which proliferate the market (caveat e</p><p><b>  Detection</b></p><

48、p>  Lightning detectors, available at differing costs and technologies, sometimes are useful to provide early warning. An interesting application is when they are used to disconnect from AC line power and to engage st

49、andby power, before the arrival of lightning. Users should beware of over-confidence in such equipment which is not perfect and does not always acquire all lightning data.</p><p><b>  Education</b&g

50、t;</p><p>  Lightning safety should be practiced by all people during thunderstorms. Preparedness includes: get indoors or in a car; avoid water and all metal objects; get off the high ground; avoid solitary

51、 trees; stay off the telephone. If caught outdoors during nearby lightning, adopt the Lightning Safety Position (LSP). LSP means staying away from other people, taking off all metal objects, crouching with feet together,

52、 head bowed, and placing hands on ears to reduce acoustic shock.</p><p>  Measuring lightning's distance is easy. Use the "Flash/Bang" (F/B) technique. For every count of five from the time of

53、seeing the lightning stroke to hearing the associated thunder, lightning is one mile away. A F/B of 10 = 2 miles; a F/B of 20 = 4 miles, etc. Since the distance from Strike A to Strike B to Strike C can be as much as 5-8

54、 miles. Be conservative and suspend activities when you first hear thunder, if possible. Do not resume outdoor activities until 20 minutes has past from the last</p><p>  Organizations should adopt a Lightni

55、ng Safety Policy and integrate it into their overall safety plan.</p><p><b>  Testing</b></p><p>  Modern diagnostic testing is available to mimic the performance of lightning conduc

56、ting devices as well as to indicate the general route of lightning through structures. This testing typically is low power, 50 watt or less. It is traceable, but will not trip MOVs, gas tube arrestors, or other transient

57、 protection devices. Knowing the behavior of an event prior to occurrence is every businessman's earnest hope. With such techniques, lightning paths can be forecast reliably.</p><p>  Codes & Standar

58、ds</p><p>  The marketplace abounds with exaggerated claims of product perfection. Frequently referenced codes and installation standards are incomplete, out dated and promulgated by commercial interests. On

59、 the other hand IEC, IEEE, MIL-STD, FAA, NASA and similar documents are supported by background engineering, the peer-review process, and are technical in nature.</p><p><b>  Summary</b></p>

60、;<p>  It is important that all of the above subjects be considered in a lightning safety analysis. There is no Utopia in lightning protection. Lightning may ignore every defense man can conceive. A systematic haz

61、ard mitigation approach to lightning safety is a prudent course of action.</p><p>  References</p><p>  API 2003, Protection Against Ignitions Arising out of Static, Lightning, and Stray Current

62、s, American Petroleum Institute, Washington DC, December 1991. </p><p>  Golde, G.H., Lightning, Academic Press, NY, 1977. </p><p>  Hasse, P., Overvoltage Protection of Low Voltage Systems, Pet

63、er Peregrinus Press, London, 1992. </p><p>  Hovath, Tibor, Computation of Lightning Protection, John Wiley, NY, 1991. </p><p>  IEEE Std 1100, Powering and Grounding of Sensitive Electronic Equ

64、ipment, IEEE, NY, NY. 1992. </p><p>  KSC-STD-E-0012B, Standard for Bonding and Grounding, Engineering Development Directorate, John F. Kennedy Space Center, NASA, 1991. </p><p>  Morris, M.E.,

65、et.al., Rocket-Triggered Lightning Studies for the Protection of Critical Assets, IEEE Transactions on Industry Applications, Vol. 30, No. 3, May/June 1994. </p><p>  Sunde, E.D. Earth Conduction Effects in

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論