版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p><b> 原文:</b></p><p> Ultrasonic distance meter</p><p> Document Type and Number:United States Patent 5442592 </p><p> Abstract:An ultrasonic distance meter c
2、ancels out the effects of temperature and humidity variations by including a measuring unit and a </p><p> reference unit. In each of the units, a repetitive series of pulses is </p><p> gener
3、ated, each having a repetition rate directly related to the </p><p> respective distance between an electroacoustic transmitter and an </p><p> electroacoustic receiver. The pulse trains are p
4、rovided to respective </p><p> counters, and the ratio of the counter outputs is utilized to determine </p><p> the distance being measured. </p><p> Publication Date:08/15/1995
5、</p><p> Primary Examiner:Lobo, Ian J. </p><p> BACKGROUND OF THE INVENTION </p><p> This invention relates to apparatus for the measurement of distance </p><p> an
6、d, more particularly, to such apparatus which transmits ultrasonic </p><p> waves between two points. </p><p> Precision machine tools must be calibrated. In the past, this has been </p>
7、<p> accomplished utilizing mechanical devices such as calipers, </p><p> micrometers, and the like. However, the use of such devices does not </p><p> readily lend itself to automatio
8、n techniques. It is known that the </p><p> distance between two points can be determined by measuring the </p><p> propagation time of a wave travelling between those two points. One </p&g
9、t;<p> such type of wave is an ultrasonic, or acoustic, wave. When an </p><p> ultrasonic wave travels between two points, the distance between the </p><p> two points can be measured
10、by multiplying the transit time of the wave </p><p> by the wave velocity in the medium separating the two points. It is </p><p> therefore an object of the present invention to provide appara
11、tus </p><p> utilizing ultrasonic waves to accurately measure the distance between </p><p> two points. </p><p> When the medium between the two points whose spacing is being mea
12、sured </p><p> is air, the sound velocity is dependent upon the temperature and </p><p> humidity of the air. It is therefore a further object of the,present </p><p> invention t
13、o provide apparatus of the type described which is </p><p> independent of temperature and humidity variations. </p><p> SUMMARY OF THE INVENTION </p><p> The foregoing and addit
14、ional objects are attained in accordance with </p><p> the principles of this invention by providing distance measuring </p><p> apparatus which includes a reference unit and a measuring unit.
15、 The </p><p> reference and measuring units are the same and each includes an </p><p> electroacoustic transmitter and an electroacoustic receiver. The </p><p> spacing between t
16、he transmitter and the receiver of the reference unit </p><p> is a fixed reference distance, whereas the spacing between the </p><p> transmitter and receiver of the measuring unit is the dis
17、tance to be </p><p> measured. In each of the units, the transmitter and receiver are </p><p> coupled by a feedback loop which causes the transmitter to generate an </p><p> aco
18、ustic pulse which is received by the receiver and converted into an </p><p> electrical pulse which is then fed back to the transmitter, so that a </p><p> repetitive series of pulses results.
19、 The repetition rate of the pulses </p><p> is inversely related to the distance between the transmitter and the </p><p> receiver. In each of the units, the pulses are provided to a counter.
20、</p><p> Since the reference distance is known, the ratio of the counter outputs </p><p> is utilized to determine the desired distance to be measured. Since </p><p> both counts
21、 are identically influenced by temperature and humidity </p><p> variations, by taking the ratio of the counts, the resultant </p><p> measurement becomes insensitive to such variations. </
22、p><p> BRIEF DESCRIPTION OF THE DRAWINGS </p><p> The foregoing will be more readily apparent upon reading the following </p><p> description in conjunction with the drawing in whic
23、h the single FIGURE </p><p> schematically depicts apparatus constructed in accordance with the </p><p> principles of this invention. </p><p> DETAILED DESCRIPTION </p>&
24、lt;p> Referring now to the drawing, there is shown a measuring unit 10 and a </p><p> reference unit 12, both coupled to a utilization means 14. The </p><p> measuring unit 10 includes an
25、electroacoustic transmitter 16 and an </p><p> electroacoustic receiver 18. The transmitter 16 includes piezoelectric </p><p> material 20 sandwiched between a pair of electrodes 22 and 24. &l
26、t;/p><p> Likewise, the receiver 18 includes piezoelectric material 26 sandwiched </p><p> between a pair of electrodes 28 and 30. As is known, by applying an </p><p> electric fiel
27、d across the electrodes 22 and 24, stress is induced in </p><p> the piezoelectric material 20. If the field varies, such as by the </p><p> application of an electrical pulse, an acoustic wav
28、e 32 is generated. </p><p> As is further known, when an acoustic wave impinges upon the receiver </p><p> 18, this induces stress in the piezoelectric material 26 which causes </p><
29、;p> an electrical signal to be generated across the electrodes 28 and 30. </p><p> Although piezoelectric transducers have been illustrated, other </p><p> electroacoustic devices may be u
30、tilized, such as, for example, </p><p> electrostatic, electret or electromagnetic types. </p><p> As shown, the electrodes 28 and 30 of the receiver 18 are coupled to </p><p> t
31、he input of an amplifier 34, whose output is coupled to the input of a </p><p> detector 36. The detector 36 is arranged to provide a signal to the </p><p> pulse former 38 when the output fro
32、m the amplifier 34 exceeds a </p><p> predetermined level. The pulse former 38 then generates a trigger pulse </p><p> which is provided to the pulse generator 40. In order to enhance the <
33、/p><p> sensitivity of the system, the transducers 16 and 18 are resonantly </p><p> excited. There is accordingly provided a continuous wave oscillator 42 </p><p> which provides a
34、 continuous oscillating signal at a fixed frequency, </p><p> preferably the resonant frequency of the transducers 16 and 18. This </p><p> oscillating signal is provided to the modulator 44.
35、To effectively </p><p> excite the transmitter 16, it is preferable to provide several cycles </p><p> of the resonant frequency signal, rather than a single pulse or single </p><p&
36、gt; cycle. Accordingly, the pulse generator 40 is arranged, in response to </p><p> the application thereto of a trigger pulse, to provide a control pulse </p><p> to the modulator 44 having
37、a time duration equal the time duration of a </p><p> predetermined number of cycles of the oscillating signal from the </p><p> oscillator 42. This control pulse causes the modulator 44 to pa
38、ss a </p><p> "burst" of cycles to excite the transmitter 16. </p><p> When electric power is applied to the described circuitry, there is </p><p> sufficient noise at
39、the input to the amplifier 34 that its output </p><p> triggers the pulse generator 40 to cause a burst of oscillating cycles </p><p> to be provided across the electrodes 22 and 24 of the tra
40、nsmitter 16. </p><p> The transmitter 16 accordingly generates an acoustic wave 32 which </p><p> impinges upon the receiver 18. The receiver 18 then generates an </p><p> electr
41、ical pulse which is applied to the input of the amplifier 34, </p><p> which again causes triggering of the pulse generator 40. This cycle </p><p> repeats itself so that a repetitive series o
42、f trigger pulses results at </p><p> the output of the pulse former 38. This pulse train is applied to the </p><p> counter 46, as well as to the pulse generator 40. </p><p> The
43、 transmitter 16 and the receiver 18 are spaced apart by the distance </p><p> "D" which it is desired to measure. The propagation time "t" for an </p><p> acoustic wave 32
44、travelling between the transmitter 16 and the receiver </p><p> 18 is given by: t=D/V s </p><p> where V s is the velocity of sound in the air between the transmitter </p><p> 16
45、 and the receiver 18. The counter 46 measures the repetition rate of </p><p> the trigger pulses, which is equal to 1/t. Therefore, the repetition </p><p> rate is equal to V s /D. The velocit
46、y of sound in air is a function of </p><p> the temperature and humidity of the air, as follows: ##EQU1## where T </p><p> is the temperature, p is the partial pressure of the water vapor, H i
47、s </p><p> the barometric pressure, Γ w and Γ a are the ratio of constant </p><p> pressure specific heat to constant volume specific heat for water vapor </p><p> and dry air, r
48、espectively. Thus, although the repetition rate of the </p><p> trigger pulses is measured very accurately by the counter 46, the sound </p><p> velocity is influenced by temperature and humid
49、ity so that the measured </p><p> distance D cannot be determined accurately. </p><p> In accordance with the principles of this invention, a reference unit </p><p> 12 is provid
50、ed. The reference unit 12 is of the same construction as </p><p> the measuring unit 10 and therefore includes an electroacoustic </p><p> transmitter 50 which includes piezoelectric material
51、52 sandwiched </p><p> between a pair of electrodes 54 and 56, and an electroacoustic receiver </p><p> 58 which includes piezoelectric material 60 sandwiched between a pair </p><p&
52、gt; of electrodes 62 and 64. Again, transducers other than the </p><p> piezoelectric type can be utilized. The transmitter 50 and the receiver </p><p> 58 are spaced apart a known and fixed
53、reference distance "D R ". The </p><p> electrodes 62 and 64 are coupled to the input of the amplifier 66, </p><p> whose output is coupled to the input of the detector 68. The outpu
54、t of </p><p> the detector 68 is coupled to the pulse former 70 which generates </p><p> trigger pulses. The trigger pulses are applied to the pulse generator </p><p> 72 which c
55、ontrols the modulator 74 to pass bursts from the continuous </p><p> wave oscillator 76 to the transmitter 50. The trigger pulses from the </p><p> pulse former 70 are also applied to the coun
56、ter 78. </p><p> Preferably, all of the transducers 16, 18, 50 and 58 have the same </p><p> resonant frequency. Therefore, the oscillators 42 and 76 both operate </p><p> at tha
57、t frequency and the pulse generators 40 and 72 provide equal </p><p> width output pulses. </p><p> In usage, the measuring unit 10 and the reference unit 12 are in close </p><p>
58、 proximity so that the sound velocity in both of the units is the same. </p><p> Although the repetition rates of the pulses in the measuring unit 10 </p><p> and the reference unit 12 are ea
59、ch temperature and humidity dependent, </p><p> it can be shown that the distance D to be measured is related to the </p><p> reference distance D R as follows: i D=D R (1/t R )/(1/t) </p&g
60、t;<p> where t R is the propagation time over the distance D R in the </p><p> reference unit 12. This relationship is independent of both temperature </p><p> and humidity. </p>
61、<p> Thus, the outputs of the counters 46 and 78 are provided as inputs to </p><p> the microprocessor 90 in the utilization means 14. The microprocessor </p><p> 90 is appropriately p
62、rogrammed to provide an output which is </p><p> proportional to the ratio of the outputs of the counters 46 and 78, </p><p> which in turn are proportional to the repetition rates of the <
63、/p><p> respective trigger pulse trains of the measuring unit 10 and the </p><p> reference unit 12. As described, this ratio is independent of </p><p> temperature and humidity and
64、, since the reference distance D R is </p><p> known, provides an accurate representation of the distance D. The </p><p> utilization means 14 further includes a display 92 which is coupled to
65、 </p><p> and controlled by the microprocessor 90 so that an operator can readily </p><p> determine the distance D. </p><p> Experiments have shown that when the distance betwee
66、n the transmitting </p><p> and receiving transducers is too small, reflections of the acoustic </p><p> wave at the transducer surfaces has a not insignificant effect which </p><p&
67、gt; degrades the measurement accuracy. Accordingly, it is preferred that </p><p> each transducer pair be separated by at least a certain minimum </p><p> distance, preferably about four inch
68、es.</p><p><b> 譯文:</b></p><p><b> 超聲波測距儀</b></p><p> 文件類型和數(shù)目:美國專利5442592 </p><p> 摘要:提出了一種超聲波測距儀來抵消溫度和濕度的變化,包括測量單元和參考</p><p>
69、標準。在每一個單位,重復的產生一系列脈沖,每一個重復直接關系到發(fā)射機和</p><p> 接收機之間的距離。脈沖串提供給各自的計數(shù)器,然后利用計數(shù)器所測得的數(shù)據(jù)</p><p><b> 進行距離的測量。</b></p><p> 出版日期: 1995年8月15日 </p><p> 主審查員:羅保.伊恩j. &
70、lt;/p><p><b> 一、背景發(fā)明 </b></p><p> 本發(fā)明涉及到儀器的測量距離,更特別是,這種儀器傳送超聲波于兩點之間。精密機器必須校準。在過去,這已經可以利用卡鉗,微米等工具來校準機械設備。不過,使用這種工具并不容易實現(xiàn)自動化。據(jù)了解,該兩點之間距離可以通過測量波在兩點之間傳播時間來確定。這樣一個類型的波可以是一種超聲波,或聲,或波。當超聲波傳播
71、與兩點之間時,兩個點之間的距離可以通過由超聲波波速乘以他的傳播時間,在合適的分離的兩點。因此,這是一個發(fā)明提供儀器利用超聲波準確測量兩點之間距離的方法。 </p><p> 當中等兩個點之間的介質是空氣,聲速是取決于溫度和空氣相對濕度。因此,這</p><p> 個發(fā)明的進一步目標是,目前的發(fā)明提供儀器的方法如同所描述的一樣是獨立于溫度和濕度的變化的。</p><p
72、><b> 二、綜述發(fā)明 </b></p><p> 前述的和額外的目標已經實現(xiàn)了根據(jù)這些原則的這項發(fā)明提供距離測量儀器,其中包括一個參考的單元和測量單元。參考和測量單元是相同的,每個單元都包括一個電聲波的發(fā)射機和接收機。參考單元的發(fā)射器和接收器之間的間隔是一個固定的參考距離,然而測量單元的發(fā)射器和接收器之間的距離才是我們所要測量的部分。在每一個單元中,發(fā)射機和接收機都連接了一個反
73、饋環(huán)路,以使發(fā)射機產生由接收器接收的聲波生脈沖,然后由接收器轉換成一個電脈沖反饋到發(fā)射機,使產生一系列重復脈沖的結果。脈沖重復率是成反比關系發(fā)射器和接收器之間的距離。在每一個單元,脈沖被用來提供給一個計數(shù)器。由于參考的距離是已經知道了的,所以計數(shù)器所輸出的數(shù)據(jù)被用來確定所期望測得的距離。由于溫度和適度的變化,這兩方面都會造成相同的影響,利用計數(shù)器所提供的數(shù)據(jù),這樣的測量對于溫度和濕度引起的變化一樣是沒有辦法避免的。</p>
74、<p><b> 三、簡要說明圖紙 </b></p><p> 通過讀接下來的說明前面的敘述將變得更加明顯,這個關于電路原理圖的描述在</p><p> 于這項發(fā)明相關規(guī)律保持了相當?shù)囊恢滦浴?lt;/p><p><b> 四、詳細說明 </b></p><p> 根據(jù)現(xiàn)在的繪圖,
75、有結果表明,測量單位和10參考單位12,都聯(lián)結起來組成可以利用的單元14 。測量單位包括10包括了一個電信號發(fā)射機16和一個電信號接收機18 。發(fā)射器16包括了夾著一對電極22河24的壓電材料20。同樣,接收機18,包括了夾著一對電極28河30的壓電材料26。眾所周知,通過利用電極22和24之間產生的電場,壓電材料20將產生壓力。如果該電場產生變化,例如通過一個電脈沖,就會產生一個聲波32。因此,進一步得知,當聲波影響到接收器18的時候
76、,這時會引起接收器上的壓電材料26產生機械變形,同時產生一個電信號通過28和30這一對電極。雖然已經對壓電傳感器作了說明,但是其他電聲裝置也可利用,例如,靜電,駐極體或電磁類型。 </p><p> 如表所示,接收器的電極28和30將于放大器34的輸入端相連接,同時,放大器的輸出端于探測器36相連接。脈沖發(fā)生器38然后產生一個觸發(fā)脈沖,這是提供給脈沖發(fā)生器40.在為了提供靈敏度該系統(tǒng)的傳感器16和18在通常情況
77、下都是保持運作的。根據(jù)相關的需要,本發(fā)明提供了一個連續(xù)波振蕩器42,他能持續(xù)的產生一個固定頻率和連續(xù)振蕩信號,最好是同傳感器16和18能接受到的固定頻率一樣。這個振蕩信號被用來提供給調制器44。為了使發(fā)射機16右線的工作,最好的做法是提供幾個周期的共振頻率信號,而不是一個單脈沖或單周期。因此,在這里使用了脈沖發(fā)生器40,用于回應每一個觸發(fā)脈沖,提供一個控制脈沖給調制器44,讓他有一個與來自于振蕩器42的周期振蕩信號預定的相同時間。這樣的
78、控制脈沖能使調制器44傳送一個周期的突破口以觸發(fā)發(fā)射機16。 當電源被用于描述的電路,有相當大的噪音輸入到放大器34 ,以至于其輸出觸發(fā)脈沖發(fā)生器40引起了正當周期變化,這個振蕩周期是用來提供給發(fā)射器16的電極22和24。發(fā)射器16因此產生聲波32并作用于接收器18,接收器18然后產生一個電脈沖輸入放大器34,這再次觸發(fā)脈沖發(fā)生器40。這個周期</p><p> 根據(jù)這項發(fā)明的基本原理,需要利用參考單元12。參
79、考單元12同參考單元10基本上是一樣的,其中,包括一電發(fā)射機50,以及在壓電材料52之間的一對電極54和56。接收器58,其中包括壓電材料60之間的一對電極62和64。再次,傳感器出了其他類型壓電也可以被利用。發(fā)射器50和接收器58之間的距離都是已知且固定的,設為DR。電極62和64連接到放大器66的輸入端,其輸出連接到探測器68。探測器68的輸出端連接到脈沖發(fā)生器70,脈沖發(fā)生器70產生觸發(fā)脈沖。觸發(fā)脈沖應用到脈沖發(fā)生器72以控制調制
80、器74通過連續(xù)振蕩器76傳送一段脈沖串傳遞至發(fā)射機50。來自于脈沖發(fā)生器70的觸發(fā)脈沖也用于計數(shù)器78。</p><p> 最好是所有的傳感器16,18,50和58具有相同的共振頻率。因此,振蕩器42和76都工作在相同的頻率上,脈沖發(fā)生器40和72產生相同帶寬的輸出脈波。</p><p> 按照慣例,測量單元10和參考單元12空間上很接近,使該聲速在這兩個單位上是相同的。雖然測量單元1
81、0和參考單元12的脈沖重復率各自依賴于各自的溫度和濕度,能證明的距離D來衡量??梢缘贸鰷y量單元和參考單元的聯(lián)系如下iD=DR(1/tR)/(1/t)。tR是指參考單元聲波傳播與固定空間的時間。這個關系與空氣的溫度和濕度都是無關的。因此,計數(shù)器46和78的輸出被用來提供微處理器90,作為方法14。微處理器90可通過編寫程序來提供輸出。這個輸出與計數(shù)器46和78的輸出是成比例的,反過來也同測量單元10和參考單元12各自的觸發(fā)脈沖串成比例。如
82、所敘述的一樣,這些比例是不依賴于溫度和濕度的,因為參考距離DR是已知的,提供了一個準確的D的參考。這個利用方法12更進一步的包括了被微處理器控制的顯示器92,所以設備可以確定距離D。</p><p> 試驗還表明當發(fā)射機和接收器傳感器之間的距離太小的時候,聲波的反射在傳感器表面的效果不是很明顯,以至于極大的影響了測量的精度。根據(jù)這種情況,使傳感器分開有一個相當?shù)淖钚【嚯x,最合適是4英寸。</p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論