版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 附 錄</b></p><p> 1 The Original English</p><p> THE KEY TECHNOLOGY OF DESIGN HOB FOR </p><p> HOBBING SCREW COMPRESSOR ROTORS </p><p> WIT
2、H CUCLOID-ARC PROFILE</p><p><b> ABSTRCT</b></p><p> The profile of cycloid-arc screw compressor rotors is not a smooth profile; it has a tip on it. When design the hob cutter used
3、 for machining this kind of rotors, the profile of hob edge will appear separation. In this paper, the author made researches on the design theory of hob cutter for hobbing the cycloid-arc rotor with tip profile, and got
4、 the best way for design this kind of hob cutter with a separate edge. It is good practice to design the hob cutter and hob the cycloid-arc rotor accordi</p><p> (1) INTRODUCTION</p><p> The
5、efficiency and reliability of screw compressor mainly depend on manufacturing technology of screw rotors. At present, the machining method of our country for machining screw rotors is milling the shortcoming of milling i
6、s low productivity and machining accuracy. Hobbing characteristic is high productivity and machining accuracy, so the machining method for hobbing instead of milling screw compressor rotors is now becoming more and more
7、popular.</p><p> Hobbing instead of milling for machining screw compressor rotors has much more advantage, but the key problem for carrying out hobbing the screw compressor rotors is that the profile of scr
8、ew compressor rotors must be suited to hobbing. Our national standard profile for screw compressor rotors have no-symmetric cycloid-arc profile and symmetric are profile [1], since no-symmetric cycloid-arc profile screw
9、compressor has much more advantage than symmetric are profile screw compressor, our nationa</p><p> (2 ) EXISTING PROBLEM</p><p> Fig.1 shows the end section of no-symmetric cycloid-arc rotor
10、s, its end profile is composed of radial line ab, arc bc, prolonged cycloid cd and radial line de. The point of intersection of prolonged cycloid cd and radial line de exist a tip d, that is, the d point of intersection
11、hasn’t common tangent. As we calculate the corresponding axial profile of hob cutter according to cutting tool design handbook or other cutting tool design data, we’ll find that the axial profile of hob cutter becomes t&
12、lt;/p><p> Fig.1 The end profile of screw rotor Fig.2 The axial profile of hob</p><p> In order to machining the required rotor profile and insure the tip not being cut out, people can usually
13、 take following two ways to solve this problem. One way is to prolong curve cd and radial line de as Fig.3 shows, this way can avoid appearing separate curve of hob edge, but hob profile will become Fig.4 shows, this kin
14、d of hob edge can neither be machined nor be used. Another way is to make a concave curve to link the separate hob edge as Fig.5 shows.</p><p> Fig.3 The end profile of screw rotor Fig.4 The axial profile
15、of hob Fig.5 The concave curve</p><p> This way can avoid the tip being cut out, but it will produce two new tips on hob edge. This kind of hob is not only difficult to be machined but also easy to be w
16、orn on the tips. Form above discussing we can see that above two ways is not the best way to solve this problem. The best way to solve this kind of problem is to figure out the intermediate curve between separate edge cu
17、rves accurately.</p><p> (3) THE BEST WAY FOR CALCULATING INTERMEDIATE CURVE ACCURATELY</p><p> Here we make use of the intermediate rack to calculate the intermediate curve between separate e
18、dge curves. That is, in the first place, we figure out the intermediate profile of rack according to the mesh of intermediate rack and rotor, in the second place, we figure out the intermediate profile of hob edge curve
19、according to the mesh of intermediate rack and hob worm.</p><p> According to gear mesh theorem, we can figure out the profile of intermediate rack mesh with rotor easily. As the tip exists on the profile o
20、f rotor, calculated profile of rotor will be two separate curves as Fig.2 shows. The two coordinates points d1 and d2 can easily figure out as following d1(x1, y1) and d2(x2, y2), obviously, the formation of separate cur
21、ve of rack profile is that the tip d on rotor profile move around the rack to form when rack meshes with rotor. According to Fig.6 we can s</p><p> Fig.6 The formation of separate curve on rack</p>&
22、lt;p> The separate curve on rack can easily be given by the following equation:</p><p><b> (1)</b></p><p> Where r is the pitch circle radius of rotor, ρ is the length of radia
23、l line od, Ф is the angle included between the radial line oe and the coordinate axis Y.</p><p> θ is a variable, its bound is θ1≤θ≤θ2, θ1 and θ2 value can be calculated by the equation (1) according to the
24、 coordinate value of d1(x1, y1) and d2(x2, y2).</p><p> As we know the separate curve equation on rack, we can figure out the separate curve equation of rack at the end of hob worm by the Fig.7 as following
25、:</p><p><b> (2)</b></p><p> Where β1 is the spiral angle of rotor, β2 is the spiral angle of hob worm.</p><p> According to gear mesh theorem [2], we can figure out
26、the separate curve equation of hob worm mesh with the separate curve equation on rack by the Fig.7 as following:</p><p> Fig.7 The common rack mesh with the rotor and the hob worm</p><p><b&
27、gt; (3)</b></p><p> According to formula (1), (2) and (3), we can accurately figure out the separate curve between the two separate profiles on hob edge.</p><p> We can insure to hob th
28、e right profile of cycloid-arc rotor according to above formula to design the hob. It is good practice to design the hob cutter and hob the cycloid-arc rotor according to practical design, manufacture and test.</p>
29、<p> 4 REFERENCES</p><p> [1] Li Wenling. Rotary Compressor for Refrigeration. Beijing: Mechanical Industry Press, 1992. 110~122. (in Chinese)</p><p> [2] Li Rusheng. Design Principle
30、of Cutting Tools. Nanjin: Science & Technology Press, 1985. 475~485. (in Chinese)</p><p><b> 2 中文翻譯</b></p><p> 設(shè)計(jì)加工螺桿式壓縮機(jī)的內(nèi)擺線—弧輪廓</p><p><b> 所用滾刀的關(guān)鍵技術(shù)</
31、b></p><p><b> 摘要</b></p><p> 螺桿式壓縮機(jī)的內(nèi)擺線—弧部分的輪廓并不是光滑的,它存在一個(gè)尖端。當(dāng)設(shè)計(jì)用來加工這種機(jī)器旋轉(zhuǎn)部分的滾齒刀刀具時(shí),這種滾刀的刃口將出現(xiàn)分離的現(xiàn)象。在本文里,作者研究了用于加工帶有末端輪廓的擺線—弧的旋轉(zhuǎn)部分滾齒刀刀具的設(shè)計(jì)原理,并且找到了設(shè)計(jì)這種具有分界線邊沿的滾齒刀刀具的最佳設(shè)計(jì)方法。通過實(shí)際的設(shè)
32、計(jì)、生產(chǎn)和測(cè)試證實(shí)這種這種理論對(duì)滾齒刀刀具和滾齒刀擺線—弧機(jī)械的旋轉(zhuǎn)部分的設(shè)計(jì)有很大的作用。</p><p><b> (1) 概述</b></p><p> 螺桿壓縮機(jī)的效率和可靠性,主要取決于螺桿機(jī)械旋轉(zhuǎn)部分的加工技術(shù)。目前,我國(guó)制造螺旋轉(zhuǎn)子的機(jī)加工方法是銑削,但缺陷是生產(chǎn)效率和加工精度都比較低。滾齒加工的特點(diǎn)是生產(chǎn)效率和加工精度高。因此,目前相對(duì)于銑削加工
33、的方法,滾齒加工變的越來越普遍。</p><p> 采用滾齒加工代替銑削來制造螺桿壓縮機(jī)機(jī)械旋轉(zhuǎn)部分有很多優(yōu)點(diǎn)。但是,實(shí)現(xiàn)滾齒加工螺桿壓縮機(jī)機(jī)械旋轉(zhuǎn)部分的主要問題是,螺桿壓縮機(jī)機(jī)械旋轉(zhuǎn)部分的輪廓必須適合于滾齒加工。我們的國(guó)家標(biāo)準(zhǔn)中螺桿壓縮機(jī)的機(jī)械旋轉(zhuǎn)部分外形有不對(duì)稱的擺線—弧輪廓和對(duì)稱的弧輪廓[1]。由于不對(duì)稱的擺線—弧輪廓螺旋壓縮機(jī)比對(duì)稱的弧輪廓有很多優(yōu)越之處,目前,我們國(guó)家的工廠都采用前者。不對(duì)稱的擺線—弧
34、輪廓是聯(lián)合的曲線輪廓,而不是光滑的曲線,在輪廓上有一個(gè)尖端,在我們國(guó)家,由于滾齒刀刀具的設(shè)計(jì)問題,那仍然是滾齒加工代替銑削這種螺桿機(jī)械旋轉(zhuǎn)部分的過程中的一個(gè)相當(dāng)大的難題。在本文里,我們將對(duì)用于滾齒加工不對(duì)稱具有尖端外形的擺線—弧輪廓的滾刀的設(shè)計(jì)原理進(jìn)行深入研究。</p><p><b> (2) 存在的問題</b></p><p> 圖1顯示了不對(duì)稱擺線—弧機(jī)械旋
35、轉(zhuǎn)部分的末端部分,它的末端輪廓由直線ab、弧bc、擺線延長(zhǎng)線cd和直線de構(gòu)成。擺線延長(zhǎng)線cd和直線de的交點(diǎn)處存在一個(gè)尖端d,也就是說,也就是說在交點(diǎn)d出存在一個(gè)共同的切點(diǎn)。當(dāng)我們通過切削刀具設(shè)計(jì)手冊(cè)或者其它切削刀具設(shè)計(jì)資料計(jì)算與滾齒刀具相應(yīng)的軸向輪廓時(shí),我們將發(fā)現(xiàn)滾刀的軸向輪廓變成兩條分開的曲線,如圖2所示:</p><p> 圖1 螺桿的旋轉(zhuǎn)部分末端輪廓圖 圖2 滾齒刀的軸向輪廓<
36、/p><p> 為了加工生產(chǎn)產(chǎn)品所需的機(jī)械旋轉(zhuǎn)部分輪廓,并且確保尖端不被切除,人們通常采用以下兩種方法來解決這個(gè)問題。一種方法是延長(zhǎng)曲線cd和直線de,如圖3所示,這種方法可以防止?jié)L刀邊沿刃口出現(xiàn)獨(dú)立的曲線,但是滾刀輪廓將變成圖4所示,這種滾刀即不能生產(chǎn)也不能可能使用。另一種方法是做一條凹形的曲線去連接分開的滾刀刀刃,如圖5所示。</p><p> 圖3螺桿旋轉(zhuǎn)部分末端 圖4 滾刀
37、的軸向輪廓 圖5 凹形曲線 </p><p> (3) 準(zhǔn)確的計(jì)算出中間曲線的最好方法</p><p> 這里我們利用中間的齒軌來推算分開的邊沿曲線中間曲線。也就是說,我們首先根據(jù)相嚙合的中間齒軌和機(jī)械的旋轉(zhuǎn)部分來弄清楚齒軌的中間輪廓,其次,我們根據(jù)相嚙合的中間齒軌和滾刀的螺旋部分來弄清楚齒軌中間的輪廓。</p><p>
38、根據(jù)齒輪嚙合定理,我們可以很容易的理解機(jī)械旋轉(zhuǎn)部分中間的齒軌嚙合。由于機(jī)械的旋轉(zhuǎn)部分輪廓存在尖端,機(jī)械旋轉(zhuǎn)部分的計(jì)算輪廓將是圖2所示的兩段分開的曲線。兩個(gè)坐標(biāo)點(diǎn)d1和d2可以很容易的由d1(x1,y1)和d2(x2,y2)表示出,顯然,當(dāng)齒軌和機(jī)械的旋轉(zhuǎn)部分捏合時(shí),機(jī)械的旋轉(zhuǎn)部分輪廓圍繞齒軌移動(dòng)的尖端d形成齒軌輪廓分開的曲線結(jié)構(gòu)。根據(jù)圖6,我們可以看出,齒輪和機(jī)械旋轉(zhuǎn)部分的嚙合與機(jī)械的旋轉(zhuǎn)部分在齒軌調(diào)節(jié)線上的滾動(dòng)調(diào)節(jié)圓是相同的,在機(jī)械的
39、旋轉(zhuǎn)部分點(diǎn)d形成的運(yùn)動(dòng)軌跡是齒軌中間的曲線。</p><p> 圖6 齒軌上分開的曲線結(jié)構(gòu)</p><p> 齒軌上分開的曲線可以由下面的等式很容易的得出:</p><p><b> (1)</b></p><p> 等式中r是轉(zhuǎn)子節(jié)距圓的半徑,ρ是直線od的長(zhǎng)度,φ是直線oe和縱坐標(biāo)Y的夾角。</p>
40、;<p> θ是可變的,它的變化范圍是θ1≤θ≤θ2,θ1和θ2的值可以依據(jù)d1(x1,y1)和d2(x2,y2)的坐標(biāo)值算由等式(1)出。</p><p> 當(dāng)我們知道關(guān)于機(jī)械的旋轉(zhuǎn)部分分開的曲線等式后,我們可以通過圖7,弄清楚在滾齒刀螺旋部分末端機(jī)械的旋轉(zhuǎn)部分分開的等式,如下: </p><p><b> (2)</b></p>
41、<p> 等式里β1是機(jī)械旋轉(zhuǎn)部分的螺旋角,β2是滾齒刀螺旋部分的螺旋角。</p><p> 依據(jù)齒輪嚙合原理[2],我們可以通過圖7,弄清楚滾齒刀螺旋部分與齒軌上分開的曲線等式相嚙合組合曲線方程如下:</p><p><b> 圖7</b></p><p><b> (3)</b></p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--螺桿式壓縮機(jī).doc
- 外文翻譯--螺桿式壓縮機(jī).doc
- 外文翻譯--螺桿式壓縮機(jī).doc
- 外文翻譯--螺桿式壓縮機(jī).doc
- 外文翻譯---設(shè)計(jì)加工螺桿式壓縮機(jī)的內(nèi)擺線—弧輪廓所用滾刀的關(guān)鍵技術(shù)
- 外文翻譯---螺桿式空氣壓縮機(jī)
- 螺桿式壓縮機(jī)安裝方案
- 螺桿式壓縮機(jī) 故障分析
- 開啟螺桿式制冷壓縮機(jī)(自制)文庫(kù).
- 外文翻譯--螺桿壓縮機(jī)的設(shè)計(jì)
- 外文翻譯--螺桿壓縮機(jī).doc
- 外文翻譯--螺桿壓縮機(jī).doc
- 外文翻譯--螺桿壓縮機(jī).doc
- 外文翻譯--螺桿壓縮機(jī).doc
- 螺桿式空氣壓縮機(jī)畢業(yè)論文
- 螺桿式空氣壓縮機(jī)設(shè)計(jì)
- 螺桿式空氣壓縮機(jī)畢業(yè)論文
- 螺桿壓縮機(jī)畢業(yè)設(shè)計(jì)(含外文翻譯)
- 螺桿壓縮機(jī)的設(shè)計(jì)外文文獻(xiàn)翻譯.doc
- 螺桿壓縮機(jī)的設(shè)計(jì)外文文獻(xiàn)翻譯.doc
評(píng)論
0/150
提交評(píng)論