版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p> Low Voltage Flyback DC-DC Converter For</p><p> Power Supply Applications</p><p> Hangzhou Liu1, John Elmes2, Kejiu Zhang1, Thomas X. Wu1, Issa Batarseh1</p><p> Depar
2、tment of Electrical Engineering and Computer Science,</p><p> University of Central Florida, Orlando, FL 32816, USA</p><p> Advanced Power Electronics Corporation, Orlando, FL 32826, USA</p
3、><p> Abstract — In this paper, we design a low voltage DC-DC converter with a flyback transformer. The converter will be used as a biased power supply to drive IGBTs. The flyback transformer using planar EI-c
4、ore is designed and simulated using ANSYS PExprt software. Besides, anLT3574 IC chip from Linear Technology has been chosen for converter control. Finally, the converter modeling and simulation are presented and PCB layo
5、ut is designed.</p><p> Keywords:Flyback, anLT3574IC, PCB </p><p> INTRODUCTION</p><p> The goal of this project is to develop and build a prototype of a high-efficiency, high-t
6、emperature isolated DC-DC converter to be used as a biased power supply for driving a complementary IGBT pair. It is important that the converter can deliver the required power at an ambient temperature of up to 100℃; th
7、erefore it has to be efficient so that its components do not exceed their maximum temperature ratings. The final converter will be completely sealed and potted in a metal case. The input volt</p><p> KEY DE
8、SIGN OUTLINE </p><p> For this flyback topology, the output voltage can be determined by both the transformer turns ratio and the flyback loop resistor pairs. Therefore, at the initial design stage, we can
9、choose a convenient turn’s ratio for the transformer, and modify it later on if necessary to make sure the output performance is desirable and the transformer will not saturate [1].</p><p> The relationship
10、 between transformers turns ratio and duty cycle can be found as</p><p> Where n is the transformer turns ratio, D is the duty cycle, VO` is the sum of the output voltage plus the rectifier drop voltage, VI
11、N is the input voltage of the transformer.</p><p> The value of feedback resistor can be calculated as</p><p> Where RREF is the reference resistor, whose value is typically 6.04k?; α is a con
12、stant of 0.986;VBG is the internal band gap reference voltage, 1.23V; and VTC is normally 0.55V [1].</p><p> With a specific IC chosen, the converter circuit can be designed based on a demo circuit and some
13、 parameters may need to be modified if necessary to optimize the performance. Furthermore, in LT Spice, a large number of simulations need to be done with different conditions such as load resistor values and input volta
14、ge levels. It is important to make sure that the output voltage can be regulated well with all these different conditions.</p><p> The most critical part of the design is the flyback transformer. With high
15、switching frequency, the AC resistance can only be estimated based on some traditional methods such as Dowell’s curve rule [2].In order to get more accurate values of AC resistance values; we propose to use finite elemen
16、t electromagnetic software ANSYS PExprt to do the design [3]. At the initial design stage, key parameters such as the worst-case input voltage, frequency, material, inductance values will be decided. After</p><
17、;p> CONVERTER SIMULATION RESULTS</p><p> We choose LT3574 chip in this design. From the simulation results in Figure 1 and Table 1, it clearly shows that the output voltages which are﹢16V and -6V respec
18、tively can be regulated pretty well with the input voltage range from 9V to 36V. The voltage tolerance ranges are from ﹢15V to ﹢19V and -12V to - 5V, respectively. In addition, the current is also under control, which is
19、 around 100mA in this design</p><p> Figure 1 . Output voltage and current simulation results</p><p> Table 1 . LT Spice simulation resuits</p><p> TRANSFORMER SIMULATION RESULTS
20、</p><p> With the initial design parameters of the transformer, we use ANSYS PExprt to simulate and further optimize the transformer [4].Figure 2 shows the primary winding voltage. In order to make the tran
21、sformer work correctly in all cases, it is important to make sure that it can work at the worst case, which is the minimum input voltage in the range. Figure 3 shows the current through the primary winding.</p>&l
22、t;p> Figure 2 . Voltage of the primary winding</p><p> Figure 3 . Current of the primary winding</p><p> Since it is a low power converter in this design, it is critical to minimize the po
23、wer losses. We choose to use the planar type transformer structure. After doing the winding interleaving, the power loss can be reduced by approximately 25% and the temperature rise can be reduced by approximately 15% [5
24、].The structure can be found in Figure 4. The primary winding is marked in yellow, which has 6 turns in series. The first secondary winding is marked in red, which has 3 turns in parallel. The seco</p><p>
25、Figure 4 . Winding geometry by interleaving method</p><p> Based on the computer simulation, the 6-layer planar transformer winding structure can be drawn in Figures 5 -10. The primary side winding has 6 tu
26、rns in series. In Figures 6 and 9, it clearly shows that the turns in different layers are connecting through via hole. In one of the secondary winding which is the +16V one, it has 3 turns in parallel as shown in Figure
27、s 5, 8 and 10. The one turn secondary winding (6V) is shown in Figure 7.</p><p> Figure 5 . Top layer winding structure (secondary 1)</p><p> Figure 6 . Inner Layer 1 winding structure (primar
28、y)</p><p> Figure 7 . Inner Layer 2 winding structure (secondary 2)</p><p> Figure 8 . Inner Layer 3 winding structure (secondary 1)</p><p> Figure 9 . Inner Layer 4 winding stru
29、cture (primary)</p><p> Figure 10 . Bottom layer winding structure (secondary 1)</p><p> The core loss of the transformer is approximately 47mW, comparing to the winding loss of 154mW, it i s
30、about 30%, as shown in Figure 11 [7].</p><p> Figure 11. Power loss of transformer</p><p> The E-I core transformer PCB in this design will be integrated into the converter’s PCB, rather than
31、a separate board being added to the whole circuit [8], which will reduce the cost of the PCB fabrication since multi-layer PCB layout is expensive.</p><p> CONVERTER CIRCUIT PCB LAYOUT</p><p>
32、 In this project, we make the transformer part layout as one component; it will be integrated into the whole circuit PCB layout. It has 6 layers totally. The isolation requirement is 1500V, so the layout takes a little m
33、ore space than the one without any isolation rules. In Figure 12, we make the primary side components all in the right hand side of the board, the secondary sides all in the left hand side of the board, and the transform
34、er in between them.The wire traces have been marked with dif</p><p> Figure 12. PCB layout of the flyback converter</p><p> CONCLUSION</p><p> In this paper, a flyback DC - DC c
35、onverter for low voltage power supply application has been designed. The modeling and simulation results are presented. Based on the design specifications, a suitable IC from Linear Technology is chosen. A large amount o
36、f circuit simulations with different conditions such as load resistor values and input voltage levels are presented to get the desirable output voltage and current performance. The transformer has been designed including
37、 electrical, mechanical an</p><p><b> REFERENCE</b></p><p> [1] Linear Technology Application Notes , Datasheet of Isolated Flyback Converter Without an Opto-Coupler, http://cds.
38、linear.com/docs /Datasheet/3574f.pdf.</p><p> [2] P.L.Dowell, “Effect of eddy currents in transformer windings” Proceedings of the IEE, NO.8 PP.1387-1394, Aug 1966. </p><p> [3] S.Xiao, “Pla
39、nar Magnetics Design for Low- Voltage DC-DC Converters” MS, 2004.</p><p> [4] ANSYS Application Notes, PEmag Getting Started: A Transformer Design Example, http://www.cadfamily.com/download/ EDA/Maxwell9/pl
40、anarGS0601.pdf.</p><p> [5] K. Zhang; T. X.Wu; H.Hu; Z. Qian; F.Chen.; K.Rustom; N.Kutkut; J.Shen; I.Batarseh; "Analysis and design of distributed transformers for solar power conversion" 2011 IEE
41、E Applied Power Electronics Conference and Exposition (APEC), v l., no., pp.1692-1697, 6-11 March 2011. </p><p> [6] Zhang.; T.X.Wu.; N.Kutkut; J.Shen; D.Woodburn; L.Chow; W.Wu; H.Mustain; I. Batarseh; ,&qu
42、ot;Modeling and design optimization of planar power transformer for aerospace applic ation," Proceedings of the IEEE 2009 National, Aerospace & Electronics Conference (NAECON) , vol., no., pp.116-120, 21-23 July
43、 2009. </p><p> [7] Ferroxcube Application Notes, Design of Planar Power Transformer, </p><p> 低電壓反激式DC-DC轉(zhuǎn)換器的在電源中的應(yīng)用</p><p> Hangzhou Liu1, John Elmes2, Kejiu Zhang1, Thomas X.
44、 Wu1, Issa Batarseh1</p><p> Department of Electrical Engineering and Computer Science, </p><p> University of Central Florida, Orlando, FL 32816, USA</p><p> Advanced Power Elec
45、tronics Corporation, Orlando, FL 32826, USA</p><p> 摘要:在本文中,我們設(shè)計(jì)了一個低電壓反激式DC-DC轉(zhuǎn)換器。該轉(zhuǎn)換器將被用來作為一個偏置電源來驅(qū)動器的IGBT。該反激式變壓器采用平面EI磁芯設(shè)計(jì)并且使用ANSYS PExprt軟件仿真。此外,該變換器控制芯片選用凌力爾特公司的anLT3574IC芯片。最后,介紹該轉(zhuǎn)換器的建模與仿真和PCB布局設(shè)計(jì)。<
46、;/p><p> 關(guān)鍵詞:反激式,,anLT3574IC,PCB</p><p><b> 1.引 言</b></p><p> 該項(xiàng)目的目標(biāo)是開發(fā)和建立一個高效率的原型,高溫隔離式DC-DC轉(zhuǎn)換器,作為偏置電源用來驅(qū)動一對互補(bǔ)的IGBT。更重要的是,該轉(zhuǎn)換器可提供所需的功率,在環(huán)境溫度高達(dá) 100℃,因此它必須是高效的,以便它的組件不超過
47、其最大額定溫度。最終轉(zhuǎn)換器將用金屬外殼完全密封。該轉(zhuǎn)換器的輸入電壓范圍為9V至36V。輸出端有兩個接地端子,一個是+16 V,而另一個是﹣6V。為了獲得所需的性能,采用了凌力爾特anLT3574 IC芯片。這種設(shè)計(jì)的關(guān)鍵是在反激式變壓器。變壓器采用平面EI磁芯設(shè)計(jì)且使用ANSYS PExprt軟件仿真。最后,介紹了該轉(zhuǎn)換器的印刷電路板的布局。</p><p><b> 2.關(guān)鍵的設(shè)計(jì)大綱</b&
48、gt;</p><p> 對于這種反激式拓?fù)浣Y(jié)構(gòu),輸出電壓可以通過變壓器匝數(shù)比和反激回路電阻確定。因此,在最初的設(shè)計(jì)階段,我們可以選擇一個簡便的變壓器匝數(shù)比,以后如有必要通過修改變壓器匝數(shù)比,確保變壓器的輸出性能是可靠的,不會飽和[1]。</p><p> 變壓器匝數(shù)比和占空比之間的關(guān)系可以得到</p><p> 其中,n是變壓器的匝數(shù)比,D為占空比,VO是輸
49、出電壓加上整流電壓降的總和,Vin是變壓器的輸入電壓。</p><p> 反饋電阻的值可以計(jì)算為</p><p> 其中,RREF是參考電阻,其值通常是6.04kΩ。α是一個常數(shù)0.986 VBG是內(nèi)部帶隙參考電壓,1.23V和V TC 通常是0.55V [1]。</p><p> 與一個特定的集成電路的選擇相比,轉(zhuǎn)換器電路設(shè)計(jì)的基于一個參數(shù)可修改的演示電路,
50、如有必要,修改某些可能需要修改的參數(shù)來優(yōu)化電路性能。此外,在LT Spice,需要大量的做不同的條件下的仿真,如負(fù)載的電阻值和輸入電壓值。更重要的是要確保,在所有這些不同的條件下,輸出電壓是可調(diào)節(jié)的。</p><p> 最關(guān)鍵的部分的設(shè)計(jì)是反激式變壓器。在高開關(guān)頻率下,交流電阻參數(shù)只能基于在一些傳統(tǒng)的方法上,如Dowell的曲線規(guī)則[2],進(jìn)行估計(jì)。為了得到更準(zhǔn)確的值的交流電阻值,我們建議使用電磁學(xué)有限元發(fā)分析
51、軟件ANSYS PExprt做設(shè)計(jì)[3]。在最初的設(shè)計(jì)階段,關(guān)鍵的參數(shù),例如在最壞情況下的輸入電壓,頻率,素材,電感值將被決定。之后,這些數(shù)據(jù)將被導(dǎo)入到軟件中,從中將產(chǎn)生一個優(yōu)化的解決方案。</p><p> 3. 轉(zhuǎn)換器的仿真結(jié)果</p><p> 在這個設(shè)計(jì)中我們選擇的LT3574芯片。從圖1和表1的仿真結(jié)果,它清楚地表明,輸出電壓分別是+16 V,-6V在從9V至36V的輸入電壓
52、范圍可調(diào)節(jié)效果相當(dāng)不錯。輸出電壓所能承受的電壓范圍分別是從+15 V至+19 V和-12V - 5V。另外,電流也在控制范圍中,其中在本設(shè)計(jì)中是大約100毫安。</p><p> 圖1. 輸出電壓和電流的模擬結(jié)果</p><p> 表1 . LT Spice仿真結(jié)果</p><p> 4. 變壓器仿真結(jié)果</p><p> 與最初的
53、設(shè)計(jì)參數(shù)的變壓器中,我們使用ANSYS PExprt仿真來進(jìn)一步優(yōu)化變壓器設(shè)計(jì)[4]。圖2 示出的初級繞組電壓。為了使變壓器在所有的情況下的正常工作,更重要的是要確保,它可以在最壞的情況下工作,且在輸入電壓最低限度范圍內(nèi)。圖3顯示了通過初級繞組的電流 。</p><p> 圖2在初級繞組的電壓 圖 3.初級繞組的電流</p><p> 在本設(shè)計(jì)中因
54、為它是一個低功耗的轉(zhuǎn)換器,關(guān)鍵是盡量減少功率損耗。我們選擇使用平面型變壓器的構(gòu)造。交錯繞組后,功率損耗可以降低約25%,并且可減少約15%的溫升。這種交錯繞組的結(jié)構(gòu),可以參見在圖4。初級繞組被標(biāo)記為黃色,有6匝串聯(lián)。第一次級繞組被標(biāo)記為</p><p> 圖 4.繞組幾何交織方法</p><p> 紅色,其中有3圈并聯(lián)。第二次級繞組被標(biāo)記為藍(lán)色,其中有1圈。這將是總共6層的多層變壓器結(jié)
55、構(gòu)[6]。</p><p> 根據(jù)在計(jì)算機(jī)上仿真,6層的平面變壓器繞組結(jié)構(gòu)可以如圖5 -10中那樣繪制。初級側(cè)繞組串聯(lián)有6匝。在圖6和9中,它清楚地表明,在不同的層中的匝數(shù),通過導(dǎo)通孔連接。+16 V一個繞組與一個次級繞組連接,它具有圖5,圖8和圖10中3匝并聯(lián)連接3匝。圖7中所示為次級繞組的一匝(6V)。</p><p> 圖5. 頂層繞組結(jié)構(gòu)(中一)
56、圖6. 內(nèi)1層繞組結(jié)構(gòu)(主)</p><p> 圖7.內(nèi)部第2層繞組結(jié)構(gòu)(中2) 圖8.內(nèi)部第3層繞組結(jié)構(gòu)(中一)</p><p> 圖 9. 內(nèi)4層繞組結(jié)構(gòu)(主) 圖10.底層繞組結(jié)構(gòu)(中1)</p><p> 該變壓器的磁心損耗是約47MW,同154mW的繞組損耗相比,它的損耗約30%,如在圖11中所示的[7]。</p>&l
57、t;p> ?。ㄗ髨D) 圖11.變壓器的功率損耗</p><p> 該EI芯變壓器印刷電路板的計(jì)將被集成到轉(zhuǎn)換器的印刷電路板上,而不是一個單獨(dú)的電路板被添加的整個電路中[8],這將降低由多層PCB布局而產(chǎn)生昂貴的PCB制造工藝的成本。</p><p> 5. 轉(zhuǎn)換電路 PCB布局</p><p> 在這個項(xiàng)目中,我們使變壓器部分布局的一個組成部分,它將被
58、集成到整個電路的PCB布局。它 總共 有 6層。隔離的要求是1500V,所以布局需要更多一點(diǎn)的空間比一個沒有任何隔離規(guī)則。如圖12中,我們將初級側(cè)元件放置在印刷電路板的右邊,二級側(cè)元件放置在印刷電路板的左邊,轉(zhuǎn)換器放置在他們中間。電線的痕跡已用不同顏色標(biāo)記,以顯示指定層的痕跡是在電路板面積大約是1.4×0.7英寸。它總是可以減少電路板的大小,通過添加更多的層。然而,成本將更加昂貴。重要的是要平衡這些因素。在PCB板的尺寸符合該
59、項(xiàng)目的規(guī)格。</p><p> 圖12. 反激式轉(zhuǎn)換器的PCB布局</p><p><b> 6.結(jié)論</b></p><p> 在本文中,反激式直流- 直流轉(zhuǎn)換器的低電壓電源應(yīng)用已經(jīng)設(shè)計(jì)完畢。它的建模與仿真結(jié)果都已介紹。根據(jù)設(shè)計(jì)規(guī)格,從凌力爾特公司產(chǎn)品中選擇一個合適的IC。在不同的條件,做了大量的仿真,如負(fù)載的電阻值和輸入電壓電平的電路
60、仿真,有助于以獲得所需要的輸出電壓和電流的性能。包括電氣,機(jī)械和熱性能的變換器就已經(jīng)設(shè)計(jì)完成了。隨著所有特定元器件的確定,該轉(zhuǎn)換器的印刷電路板布局已經(jīng)被設(shè)計(jì)完成了。</p><p><b> 參考文獻(xiàn)</b></p><p> [1] Linear Technology Application Notes , Datasheet of Isolated Flyb
61、ack Converter Without an Opto-Coupler, http://cds.linear.com/docs /Datasheet/3574f.pdf.</p><p> [2] P.L.Dowell, “Effect of eddy currents in transformer windings” Procedings of the IEE, vol.113, No.8, pp.1
62、387-1394, Aug 1966.</p><p> [3] S.Xiao, “Planar Magnetics Design for Low- Voltage DC-DC Converters” MS thesis, University of Central Florida, 2004.</p><p> [4] ANSYS Application Notes, PExpr
63、t Getting Started: A Transformer Design Example,http://www.cadfamily.com/download/EDA/ANSOFTpex//pextran.pdf.</p><p> [5] K. Zhang; T. X.Wu; H.Hu; Z. Qian; F.Chen.; K.Rustom; N.Kutkut; J.Shen; I.Batarseh;
64、, "Analysis and design of distributed transformers for solar power conversion" 2011 IEEE Applied Power Electronics Conference and Exposition (APEC), v l., no., pp.1692-1697, 6-11 March 2011.</p><p>
65、; [6] K. Zhang.; T.X.Wu.; N.Kutkut; J.Shen; D.Woodburn; L.Chow; W.Wu; H.Mustain; I. Batarseh; , "Modeling and design optimization of planar power transformer for aerospace applic ation," Proceedings of the IEE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 低電壓啟動的低功耗BOOST型DC-DC轉(zhuǎn)換器的設(shè)計(jì).pdf
- 開關(guān)電源-DC-DC轉(zhuǎn)換器的設(shè)計(jì).pdf
- 外文翻譯---電動汽車dc-dc電源轉(zhuǎn)換器的原理、建模和控制
- 電壓模式PFM升壓DC-DC轉(zhuǎn)換器設(shè)計(jì).pdf
- Boost DC-DC轉(zhuǎn)換器的設(shè)計(jì).pdf
- 高效率升壓式DC-DC轉(zhuǎn)換器的設(shè)計(jì).pdf
- 基于PWM的DC-DC轉(zhuǎn)換器的帶隙基準(zhǔn)電壓源設(shè)計(jì).pdf
- 低壓啟動PWM DC-DC轉(zhuǎn)換器的設(shè)計(jì).pdf
- 反激式AC-DC轉(zhuǎn)換器的研究與設(shè)計(jì).pdf
- 用于白光LED驅(qū)動的升壓式DC-DC轉(zhuǎn)換器設(shè)計(jì).pdf
- 2010年--外文翻譯--高效雙向軟開關(guān)DC-DC轉(zhuǎn)換器(原文).PDF
- 2010年--外文翻譯--高效雙向軟開關(guān)DC-DC轉(zhuǎn)換器(譯文).doc
- 多組切換式降壓型DC-DC電源轉(zhuǎn)換器的控制器設(shè)計(jì)與仿真.pdf
- 基于lt3573隔離型反激式dc-dc開關(guān)電源的設(shè)計(jì)
- 一種升壓式PFM DC-DC轉(zhuǎn)換器設(shè)計(jì).pdf
- DC-DC轉(zhuǎn)換器中核心模塊的研究與設(shè)計(jì).pdf
- 雙端反激式軟開關(guān)DC-DC變換器.pdf
- [雙語翻譯]--電氣自動化外文翻譯--高效雙向軟開關(guān)dc-dc轉(zhuǎn)換器
- 開關(guān)型降壓DC-DC轉(zhuǎn)換器設(shè)計(jì).pdf
- Buck DC-DC轉(zhuǎn)換器研究與設(shè)計(jì).pdf
評論
0/150
提交評論