版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p> 本科畢業(yè)設(shè)計(jì)外文翻譯</p><p> 超高層建筑結(jié)構(gòu)橫向風(fēng)荷載效應(yīng)</p><p> 院(系、部)名 稱 : 城市建設(shè)學(xué)院 </p><p> 專 業(yè) 名 稱: 土木工程 </p><p> 學(xué) 生 姓 名: ***
2、 </p><p> 學(xué) 生 學(xué) 號: ********** </p><p> 指 導(dǎo) 教 師: </p><p> 2012 年 12 月 25 日</p><p> Across-wind loads and effects of super-tall
3、 buildings and</p><p> Structures</p><p><b> Abstract</b></p><p> Across-wind loads and effects have become increasingly important factors in the structural design of
4、 super-tall buildings and structures with increasing height. Across-wind loads and effects of tall buildings and structures are believed to be excited by inflow turbulence, wake, and inflow-structure interaction, which a
5、re very complicated. Although researchers have been focusing on the problem for over 30 years, the database of across-wind loads and effects and the computation methods of equivale</p><p> Introduction <
6、/p><p> With the development of science and technology, structures are becoming larger, longer, taller, and more sensitive to strong wind. Thus, wind engineering researchers are facing with more new challenges
7、, even problems they are currently unaware of. For example, the construction of super tall buildings is now prevalent around the world. The Chicago Sears Tower with a height of 443 m has kept the record of the world’s ta
8、llest building for 26 years now. Dozens of super-tall buildings with heights of</p><p> Davenport initially introduced stochastic concepts and methods into wind-resistant study on along-wind loads and effec
9、ts of buildings and other structures. Afterward, researchers developed related theories and methods, and the main research results have already been reflected in the load codes of some countries for the design of buildin
10、gs and structures. For modern super-tall buildings and structures, across- wind loads and effects may surpass along-wind ones. Although researchers have been focu</p><p> Therefore, studying across-wind vib
11、ration and the equivalent static wind loads of super-tall buildings and structures is of great theoretical significance and practical value in the field of structural design of super-tall buildings and structures. The cu
12、rrent paper thus reviews the research </p><p> situation of across-wind loads and effects of super-tall buildings and structures both at home and abroad. Then, the research results given by us are presented
13、. Finally, a case study of across-wind loads and effects of a typical super-tall structure is illustrated.</p><p> Mechanism of across-wind loads and effects </p><p> Previous researches focus
14、ed mainly on the mechanism of across-wind load. Kwok pointed out that across-wind excitation comes from wake, inflow turbulence, and wind-structure interaction effect, which could be recognized as aerodynamic damping. So
15、lari attributed the across-wind load to across-wind turbulence and wake excitations, considering wake as the main excitation. Islam et al. and Kareem claimed that across-wind responses are induced by lateral uniform pres
16、sure fluctuation due to separation </p><p> Across-wind aerodynamic force </p><p> As stated above, the across-wind aerodynamic force can be obtained basically through the following channels:
17、 identifying across-wind aerodynamic force from across-wind responses of an aero elastic building model in a wind tunnel; obtaining across-wind aerodynamic force through spatial integration of wind pressure on rigid mode
18、ls; obtaining generalized aerodynamic force directly from measuring base bending moment using high frequency force balance technique. </p><p> Identification of across-wind aerodynamic force from dynamic r
19、esponses of aero elastic building model. </p><p> This method employs across-wind dynamic responses of the aero elastic building model, combining the dynamic characteristics of the model to identify across
20、-wind aerodynamic force. Melbourne and Cheung performed aero elastic model wind tunnel tests on a series of circular, square, hexagon, polygon with eight angles, square with reentrant angles and fillets, and tall or cyli
21、ndrical structures with sections contracting along height. However, further studies showed that across-wind aerodynamic dampi</p><p> Wind pressure integration method. </p><p> Researchers ha
22、ve recommended wind pressure integration to obtain more accurately the across-wind aerodynamic forces on tall buildings. Islam et al . adopted this method to obtain across-wind aerodynamic forces on tall buildings and s
23、tructures. Cheng et al. experimentally studied across-wind aerodynamic forces of typical buildings under different wind field conditions and derived empirical formulas for the power spectrum density of the across-wind ae
24、rodynamic force reflecting the effects of turb</p><p> High frequency force balance technique.</p><p> Compared with the pressure measuring technique, high frequency force balance technique ha
25、s its unique advantage for obtaining total aerodynamic forces. The test and data analysis procedures are both very simple; hence, this technique is commonly used for selection studies on architectural appearance in the i
26、nitial design stage of super-tall buildings and structures. Currently, this technique is widely used for total wind loads acting on super-tall buildings and structures, and for dynamic respon</p><p> Kareem
27、 conducted an experimental study on across-wind aerodynamic forces on tall buildings with various section shapes in urban and suburban wind co research showed that for the buildings with , uncertainties of wind and struc
28、tural parameters have small effects on PSD of the across-wind aerodynamic force, and the correlation between the along-wind aerodynamic force and the across-wind aerodynamic force or the torsion moment is negligible, but
29、 there is a strong correlation between the across-wind</p><p> Across-wind aerodynamic damping </p><p> In 1978, Kareem performed an investigation on across-wind dynamic responses of tall bui
30、ldings based on both of the aero elastic model technique and the wind pressure integration method. He found out that the across-wind dynamic responses calculated with the across-wind aerodynamic forces obtained from the
31、wind pressure tests at a certain test wind velocity range were always smaller than those of the aero elastic model of the same building model. This important result made researchers realize the</p><p> Subs
32、equently, researchers carried out numerous studies on the problem and developed effective methods for identifying aerodynamic damping. The first kind of method obtains aerodynamic damping by comparing the dynamic respons
33、es computed based on the aerodynamic forces from rigid building model tests and those from aero elastic model tests. The second one separates aerodynamic damping force from the total aerodynamic force measured from aero
34、elastic building models or forced vibration building mod</p><p> Steckley initially developed a set of forced vibration devices for measuring total aerodynamic forces, including aerodynamic damping force an
35、d aerodynamic force. He measured the base bending moment of a tall building model, which was vibrated by a specially designed device. The aerodynamic force related to structure motion was separated from the total aerodyn
36、amic force, and then it was decomposed into aerodynamic stiff force and aerodynamic damping force to obtain aerodynamic damping. Vickery an</p><p> Identifying aerodynamic damping based on the stochastic vi
37、bration responses of aero elastic building models can be performed using appropriate system identification techniques, which include frequency domain methods, time domain methods, and frequency-time domain methods. Among
38、 these methods, the random decrement method, one of the time domain methods, is broadly adopted to identify the aerodynamic damping of tall buildings and structures. Jeary introduced the random decrement technique to ide
39、nt</p><p> Application to the codes </p><p> As stated above, although researchers have been focusing on across-wind loads on tall buildings for over 30 years now, the widely accepted databas
40、e of across-wind loads and computation methods of equivalent static wind loads have not been developed yet. Moreover, only a few countries have adopted related contents and provisions in their codes.</p><p>
41、 Compared with the codes of other countries, the Architectural Association of Japan provides the best method for across-wind loads for structural design of tall buildings. Nevertheless, the formula for PSD of the across
42、-wind force in the code can only be applied to tall buildings with aspect ratios of less than six, which seems difficult to meet the actual needs. In addition, the method takes across-wind inertia load of fundamental mod
43、e as across-wind equivalent static wind load including backgro</p><p> . In the present load code for the design of building structures (GB50009-2001) of world, only a simple method for calculating vortex-i
44、nduced resonance of chimney-like tall structures with a circular section is provided, which is not applicable to the wind-resistant design for tall buildings and structures in general. In the design specification titled
45、“Specification for Steel Structure Design of Tall Buildings” , our related research results have been adopted. </p><p> Concluding remarks </p><p> With the continuing increase in the height
46、of buildings, across-wind loads and effects have become increasingly important factors for the structural design of super-tall buildings and structures. The current paper reviews researches on across-wind loads and effec
47、ts of super-tall buildings and structures, including the mechanism of across-wind loads and effects, across-wind aerodynamic forces, across-wind aerodynamic damping, and applications in the code. Consequently, some of ou
48、r research achiev</p><p> 超高層建筑結(jié)構(gòu)橫向風(fēng)荷載效應(yīng)</p><p><b> 摘要</b></p><p> 隨著建筑高度的不斷增加,橫向風(fēng)荷載效應(yīng)已經(jīng)成為影響超高層建筑結(jié)構(gòu)設(shè)計(jì)越來越重要的因素。高層建筑結(jié)構(gòu)的橫向風(fēng)荷載效應(yīng)被認(rèn)為由空氣湍流,搖擺以及空氣流體結(jié)構(gòu)相互作用所引起的。這些都是非常復(fù)雜的。盡管30
49、年來,研究人員一直關(guān)注這個問題,但橫向風(fēng)荷載效應(yīng)的數(shù)據(jù)庫以及等效靜力風(fēng)荷載的計(jì)算方法還沒有被開發(fā),大多數(shù)國家在荷載規(guī)范里還沒有相關(guān)的規(guī)定。對超高層建筑結(jié)構(gòu)的橫向風(fēng)荷載效應(yīng)的研究成果主要包括橫向風(fēng)荷載的動力以及動力阻尼的測定,數(shù)據(jù)庫的開發(fā)和等效靜力風(fēng)荷載的理論方法的等等。在本文中,我們首先審查目前國內(nèi)外關(guān)于超高層建筑結(jié)構(gòu)風(fēng)荷載的影響的研究。然后我們在闡述我們的研究成果。最后,我們會列舉我們研究成果在超高層建筑結(jié)構(gòu)中應(yīng)用的的案例。</
50、p><p><b> 引言</b></p><p> 隨著科技的發(fā)展,建筑物也越來越長、高、大,越來越對強(qiáng)風(fēng)敏感。因此,風(fēng)工程研究人員面臨著更多新的挑戰(zhàn),甚至一些未知的問題。例如,超高層建筑現(xiàn)在在全世界普遍流行。高度為443米的芝加哥希爾斯塔保持了是世界上最高建筑物26年的記錄,現(xiàn)在還有幾十個超過400米的超高層建筑被建造。828米高的迪拜塔已經(jīng)建造完成。在發(fā)達(dá)國家,
51、甚至有人建議建造數(shù)千米的“空中城市”。隨著高度的增加,輕質(zhì)高強(qiáng)材料的使用,風(fēng)荷載效應(yīng)特別是具有低阻尼的超高層建筑橫向風(fēng)動力響應(yīng)將變得更加顯著。因此,強(qiáng)風(fēng)荷載將成為設(shè)計(jì)安全的超高層建筑結(jié)構(gòu)中的一個重要的控制因素。</p><p> 達(dá)文最初引入隨機(jī)的概念和方法應(yīng)用發(fā)哦順風(fēng)向荷載效應(yīng)的建筑物和其他結(jié)構(gòu)的抗風(fēng)研究。之后,研究人員完善了相關(guān)的理論和方法,并且主要的研究成果已經(jīng)反映在一些國家的結(jié)構(gòu)設(shè)計(jì)荷載規(guī)范里。對現(xiàn)代超
52、高層建筑結(jié)構(gòu),橫風(fēng)向風(fēng)荷載的作用可能已經(jīng)超過順風(fēng)向荷載效用。雖然研究人員已經(jīng)關(guān)注這個方向已經(jīng)30多年了,但能夠被廣泛接受的橫風(fēng)向荷載數(shù)據(jù)庫以及等效靜力荷載的計(jì)算方法還沒有形成。只有少數(shù)國家在他們的荷載規(guī)范里有相關(guān)的內(nèi)容和規(guī)定。</p><p> 因此,研究超高層建筑結(jié)構(gòu)橫風(fēng)向風(fēng)振和等效靜力荷載在超高層建筑設(shè)計(jì)領(lǐng)域內(nèi)具有重要的理論意義和實(shí)用價值。</p><p> 橫風(fēng)向荷載及作用機(jī)制&
53、lt;/p><p> 過去的研究主要集中在橫風(fēng)向荷載機(jī)制。橫風(fēng)向荷載的激發(fā)主要由于被公認(rèn)為空氣動力阻尼的尾流、空氣湍流以及風(fēng)荷載耦合作用。索拉里認(rèn)為橫風(fēng)向荷載主要由于尾流的原因所引起??ɡ锬仿暦Q橫風(fēng)向的效應(yīng)主要是由分離剪切層和尾流波動引起的橫向均勻壓力波動所引起的。目前,高層建筑橫風(fēng)向荷載機(jī)制已被人為是流入湍流激發(fā)、尾流激發(fā)、以及氣動彈性影響。湍流以及尾流激勵一般是外部空氣動力,在本文章中,所涉及的統(tǒng)稱為空氣動力。
54、同時,氣體的彈性效應(yīng)可以被認(rèn)為是氣體動力阻尼。橫風(fēng)向氣體動力不再像順向風(fēng)一樣符合準(zhǔn)穩(wěn)態(tài)假設(shè)。因此,橫向風(fēng)荷載譜不能直接作為一個脈動風(fēng)速譜。對不穩(wěn)定風(fēng)壓力來說,風(fēng)洞試驗(yàn)技術(shù)是目前研究橫向風(fēng)動力的主要技術(shù)。風(fēng)洞試驗(yàn)技術(shù)主要包括氣體彈性模型試驗(yàn)、高頻力平衡試驗(yàn)以及對多點(diǎn)壓力測量的剛性模型實(shí)驗(yàn)技術(shù)。用橫風(fēng)向外部動力,橫風(fēng)向氣動阻尼,橫向風(fēng)響應(yīng)和建筑結(jié)構(gòu)等效靜力風(fēng)荷載的數(shù)據(jù)可以對超高層建筑結(jié)構(gòu)進(jìn)行計(jì)算。</p><p>&
55、lt;b> 橫風(fēng)向氣動力</b></p><p> 如上所述,橫風(fēng)向氣動力基本上可以通過以下途徑獲得:從氣動彈性模型在一個風(fēng)洞的橫風(fēng)向響應(yīng)確定橫風(fēng)向氣動力;通過剛性模型風(fēng)壓空間一體化獲得橫向風(fēng)動力;使用高頻測力天平技術(shù)測量基底彎矩來獲得廣義的氣動力。</p><p> 從氣動彈性模型的動態(tài)響應(yīng)確定橫風(fēng)向氣動力。這種方法采用的是氣動彈性模型的橫風(fēng)向風(fēng)振響應(yīng),結(jié)合動態(tài)特
56、性的模型識別橫風(fēng)向氣動力。墨爾本對對一系列圓形、方形、六角形、多邊形沿高度分布進(jìn)行氣動彈性模型風(fēng)洞試驗(yàn)。然而進(jìn)一步試驗(yàn)表明您橫風(fēng)向氣動阻力與氣動力混合在一起,使他難以準(zhǔn)確地提取氣動阻尼力。因此,該方法很少使用。</p><p><b> 風(fēng)壓積分法</b></p><p> 研究人員建議用風(fēng)壓積分法獲取更準(zhǔn)確的高層建筑橫風(fēng)向氣動力。伊斯蘭等人采用這種方法得到橫風(fēng)向
57、氣動力,陳等人研究了典型建筑結(jié)構(gòu)在不同風(fēng)場條件橫風(fēng)向氣動力。影響橫風(fēng)向氣動力的因素主要有湍流強(qiáng)度、湍流尺度。湍流強(qiáng)度被發(fā)現(xiàn)擴(kuò)大帶氣動力和降低峰值。然而,湍流強(qiáng)度被認(rèn)為對總能量幾乎沒有影響。因此,研究人員在某種程度上已經(jīng)意識到了在風(fēng)力條件定量規(guī)則的變化橫風(fēng)氣動力。梁等人使用這種方法檢查了建筑物上的典型矩形邊界層風(fēng)洞橫風(fēng)向氣動力,從而提出高大的建筑物的經(jīng)驗(yàn)公式和橫風(fēng)向動態(tài)響應(yīng)模型。結(jié)果表明, 橫風(fēng)向湍流對于橫風(fēng)向氣動力的貢獻(xiàn)比那些激勵要小的
58、多?;诖罅康慕Y(jié)果,導(dǎo)出橫風(fēng)向湍流激勵和激發(fā)后的PSD計(jì)算公式。第一廣義的橫風(fēng)向氣動力計(jì)算可以通過在剛性建筑模型整合壓力分布得到,這是該方法一個重要的優(yōu)越性。然而,考慮到在這類方法需要大量的大規(guī)模的結(jié)構(gòu)測壓,同步測量風(fēng)壓是很難實(shí)現(xiàn)的。此外,對于建筑和結(jié)構(gòu)復(fù)雜的配置,準(zhǔn)確的風(fēng)壓分布和空氣動力難以使用這種方法。</p><p><b> 高頻測力平衡技術(shù)</b></p><
59、p> 與壓力測量技術(shù)相比,高頻力平衡技術(shù)對于得到總氣動力有其獨(dú)特的優(yōu)勢,檢測和數(shù)據(jù)分析過程都很簡單。因此這項(xiàng)技術(shù)通常應(yīng)用于初期設(shè)計(jì)階段的建筑外觀的選擇。目前這項(xiàng)技術(shù)被廣泛應(yīng)用于作用在超高層建筑結(jié)構(gòu)的全風(fēng)荷載以及動力響應(yīng)計(jì)算。高頻力平衡技術(shù)自從1970年已經(jīng)逐漸發(fā)展起來。賽馬可等人是第一批把此技術(shù)應(yīng)用到模型測量的人。他們最初提出平衡模型系統(tǒng)應(yīng)有一個比風(fēng)力頻率更高的固有頻率。由常和達(dá)文發(fā)展的平衡技術(shù)標(biāo)志著平衡設(shè)備的成熟。</p
60、><p> 卡里姆進(jìn)行了一項(xiàng)實(shí)驗(yàn)研究。對于在城市和郊區(qū)具有不同截面形式的高層建筑的橫風(fēng)向氣動力研究表明對于建筑物風(fēng)的不確定以及結(jié)構(gòu)參數(shù)對橫風(fēng)向空氣動力的設(shè)計(jì)有很小的影響并且順風(fēng)向和橫風(fēng)向氣動力或扭矩之間的聯(lián)系時微不足道的。但橫風(fēng)向動力和扭矩之間的聯(lián)系是非常密切的。這個結(jié)論對于三維方向精確的風(fēng)荷載模型是很重要的。特別是石和全等人做了一系列關(guān)于矩形建筑的邊率,建筑物橫截面形狀,建筑的面率的效應(yīng)以及用五元平衡的高層建筑橫
61、風(fēng)向動力設(shè)計(jì)的風(fēng)域條件。事實(shí)上,基于大量的風(fēng)隧道檢測結(jié)果典型高層建筑橫風(fēng)向氣動力系數(shù)的公式已經(jīng)被我們建立了。</p><p><b> 橫風(fēng)向氣動阻尼</b></p><p> 1978年卡里姆對基于氣動彈性模型技術(shù)和風(fēng)壓積分法的高層建筑橫風(fēng)向動力響應(yīng)做了一次調(diào)查研究。他指出由在一定范圍內(nèi)風(fēng)壓力測試獲得的橫風(fēng)向氣動力計(jì)算而得到的橫風(fēng)向風(fēng)振響應(yīng)總是比那些相同建筑模型
62、的氣動彈性模型要小。這個重要的研究成果使得研究人員認(rèn)識到橫風(fēng)向氣動負(fù)阻尼的存在。</p><p> 后來,研究人員對這個問題進(jìn)行了大量的研究并且找到了有效的方案來確定氣動阻尼。第一種方法是通過比較基于來自剛性模型試驗(yàn)和氣動彈性模型試驗(yàn)的氣動力所得到的到哪個臺響應(yīng)。第二種方法是從由氣動彈性模型或強(qiáng)迫振動模型所得到的總氣動力中分離出氣動阻力。第三種方法是從氣動彈性模型分離氣動阻尼的的識別方法。此外,研究人員意識到風(fēng)
63、因素的影響規(guī)律。這些因素包括結(jié)構(gòu)形狀、結(jié)構(gòu)動力參數(shù)、風(fēng)條件等等??ɡ锬返热耸堑谝慌岢鐾ㄟ^比較來確定氣動阻尼的方法。陳等人采用這種技術(shù)來研究橫風(fēng)向效應(yīng)和高層建筑結(jié)構(gòu)的動態(tài)阻尼并提出了一個氣動阻尼公式。</p><p> 史迪克最初制造了一批測定總氣動力、氣動阻尼力與氣動力的強(qiáng)迫振動測量設(shè)備。他測量高層建筑模型基底彎矩是通過一個專門的設(shè)計(jì)裝置產(chǎn)生振動所產(chǎn)生的有關(guān)的氣動力從總氣動力脫離進(jìn)而分解為氣動應(yīng)力和氣動阻尼力
64、獲得氣動阻尼。柯伯試圖對諧波振動建筑模型測量風(fēng)壓獲得總氣動力。然后用類似史迪克的方法計(jì)算空氣阻尼。這種方法的優(yōu)點(diǎn)是真實(shí)的建筑特性并非必須被考慮到。這種方法更方便更實(shí)用,特別是在推廣實(shí)驗(yàn)結(jié)果。這種方法的的主要缺點(diǎn)是它需要復(fù)雜的設(shè)備,尤其是直到現(xiàn)在多元耦合裝置是不可用的。</p><p> 確定氣動阻尼的隨機(jī)振動響應(yīng)的氣動彈性模型課采用適當(dāng)?shù)南到y(tǒng)識別技術(shù),其中包括頻域法,時域的方法以及時域頻域的方法。在這些方法中隨
65、機(jī)減量法、時域方法被廣泛采用以確定高層建筑的氣動阻尼。杰瑞介紹隨機(jī)減量法來識別結(jié)構(gòu)阻尼。馬克采用隨機(jī)減量法確定高層建筑順橫風(fēng)向氣動阻尼。他們分析了影響建筑長寬比、邊比、氣動阻尼、結(jié)構(gòu)阻尼。田村等人用隨機(jī)減量技術(shù)確定超高層建筑氣動阻尼。全等人通過實(shí)驗(yàn)確定在不同的風(fēng)領(lǐng)域具有不同結(jié)構(gòu)中阻尼方形截面的橫風(fēng)向氣動阻尼,并得出了一個經(jīng)驗(yàn)公式。這些研究成果已通過相關(guān)的中國規(guī)范。秦和谷是第一個引入隨機(jī)空間識別方法于氣動參數(shù)的確認(rèn)的研究人員。這些氣動參數(shù)
66、包括大跨度橋梁氣動剛度和阻尼。于隨機(jī)變量法相比,隨機(jī)空間識別方法具有更多的優(yōu)點(diǎn)。它能克服隨機(jī)變量法的弱噪音抵抗力和需要大量實(shí)驗(yàn)數(shù)據(jù)的缺點(diǎn)。秦采用這種方法來確定高層建筑的氣動阻尼。</p><p><b> 規(guī)范的實(shí)用性</b></p><p> 如上所說,雖然研究者一直關(guān)注高層建筑風(fēng)荷載超過30年了,但被廣泛接受的橫風(fēng)向風(fēng)荷載數(shù)據(jù)庫和計(jì)算方法,等效靜力風(fēng)荷載尚未開
67、發(fā)。此外,只有少數(shù)國家采用相關(guān)的規(guī)定和代碼。于其他國家相比,日本建筑協(xié)會提供了計(jì)算高層建筑結(jié)構(gòu)橫風(fēng)向荷載的最好方法。然而公式的橫風(fēng)向代碼知適用于高層建筑高寬比小于六,這似乎很難滿足實(shí)際需要。而且此方法在這種方法里氣動阻尼沒有被考慮。</p><p> 在目前的建筑結(jié)構(gòu)荷載規(guī)范只提供了一個簡單的方法來計(jì)算渦激共振的高聳結(jié)構(gòu),而一般不適用于高層建筑結(jié)構(gòu)抗風(fēng)設(shè)計(jì)。在題為“高層建筑鋼結(jié)構(gòu)設(shè)計(jì)詳細(xì)說明”里,我們的研究成果
68、已經(jīng)通過。</p><p><b> 總結(jié)</b></p><p> 隨著建筑高度不斷增加,橫風(fēng)向荷載效應(yīng)已經(jīng)成為超高層建筑結(jié)構(gòu)設(shè)計(jì)的重要因素。目前,對超高層建筑結(jié)構(gòu)橫風(fēng)向荷載的研究主要包括橫風(fēng)向風(fēng)荷載的機(jī)制,橫風(fēng)向氣動力、氣動阻尼和在規(guī)范中的應(yīng)用。因此我們的一些研究成果主要有典型建筑結(jié)構(gòu)的橫風(fēng)向力,氣動阻尼以及在中國規(guī)范的應(yīng)用。最后介紹了典型的案例,在這個案例中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--超高層建筑結(jié)構(gòu)橫向風(fēng)荷載效應(yīng)
- 外文翻譯--超高層建筑結(jié)構(gòu)橫向風(fēng)荷載效應(yīng)
- 外文翻譯--超高層建筑結(jié)構(gòu)橫向風(fēng)荷載效應(yīng)
- 外文翻譯--超高層建筑結(jié)構(gòu)橫向風(fēng)荷載效應(yīng).doc
- 外文翻譯--超高層建筑結(jié)構(gòu)橫向風(fēng)荷載效應(yīng).doc
- 超高層建筑結(jié)構(gòu)旋轉(zhuǎn)風(fēng)荷載效應(yīng)研究.pdf
- 超高層建筑風(fēng)荷載反演分析.pdf
- 超高層建筑結(jié)構(gòu)簡化建模與風(fēng)效應(yīng)分析.pdf
- 超高層建筑結(jié)構(gòu)風(fēng)荷載響應(yīng)有限元分析
- 超高層建筑結(jié)構(gòu)風(fēng)振控制與抗風(fēng)設(shè)計(jì)
- 超高層建筑的結(jié)構(gòu)抗風(fēng)設(shè)計(jì)
- 超高層建筑結(jié)構(gòu)風(fēng)荷載響應(yīng)有限元分析.pdf
- 超高層建筑風(fēng)振與等效風(fēng)荷載研究.pdf
- 超高層建筑風(fēng)重耦合效應(yīng)及等效靜力風(fēng)荷載研究(1)
- 超高層建筑結(jié)構(gòu)的施工控制
- 超高層建筑風(fēng)荷載反分析識別研究.pdf
- 超高層建筑風(fēng)重耦合效應(yīng)及等效靜力風(fēng)荷載研究.pdf
- 論超高層建筑結(jié)構(gòu)設(shè)計(jì)
- 典型截面超高層建筑群風(fēng)荷載干擾效應(yīng)研究.pdf
- 錐形超高層建筑風(fēng)荷載模型與風(fēng)振響應(yīng).pdf
評論
0/150
提交評論