版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 附錄</b></p><p> Machining fixture locating and clamping position optimization using genetic algorithms</p><p> Fixtures are used to locate and constrain a workpiece du
2、ring a machining operation, minimizing workpiece and fixture tooling deflections due to clamping and cutting forces are critical to ensuring accuracy of the machining operation. Traditionally, machining fixtures are desi
3、gned and manufactured through trial-and-error, which prove to be both expensive and time-consuming to the manufacturing process. To ensure a workpiece is manufactured according to specified dimensions and tolerances, it
4、must</p><p> Theoretically, the 3-2-1 locating principle can satisfactorily locate all prismatic shaped workpieces. This method provides the maximum rigidity with the minimum number of fixture elements. To
5、position a part from a kinematic point of view means constraining the six degrees of freedom of a free moving body (three translations and three rotations). Three supports are positioned below the part to establish the l
6、ocation of the workpiece on its vertical axis. Locators are placed on two peripheral ed</p><p> For a given number of fixture elements, the machining fixture synthesis problem is the finding optimal layout
7、or positions of the fixture elements around the workpiece. In this paper, a method for fixture layout optimization using genetic algorithms is presented. The optimization objective is to search for a 2D fixture layout th
8、at minimizes the maximum elastic deformation at different locations of the workpiece. ANSYS program has been used for calculating the deflection of the part under clampin</p><p> Fixture design has received
9、 considerable attention in recent years. However, little attention has been focused on the optimum fixture layout design. Menassa and DeVries[1]used FEA for calculating deflections using the minimization of the workpiece
10、 deflection at selected points as the design criterion. The design problem was to determine the position of supports. Meyer and Liou[2] presented an approach that uses linear programming technique to synthesize fixtures
11、for dynamic machining conditions.</p><p> Most of the above studies use linear or nonlinear programming methods which often do not give global optimum solution. All of the fixture layout optimization proced
12、ures start with an initial feasible layout. Solutions from these methods are depending on the initial fixture layout. They do not consider the fixture layout optimization on overall workpiece deformation. </p><
13、;p> The GAs has been proven to be useful technique in solving optimization problems in engineering [10–12]. Fixture design has a large solution space and requires a search tool to find the best design. Few researcher
14、s have used the GAs for fixture design and fixture layout problems. Kumar et al. [13] have applied both GAs and neural networks for designing a fixture. Marcelin [14] has used GAs to the optimization of support positions
15、. Vallapuzha et al. [15] presented GA based optimization method that</p><p> Some of the studies do not consider the optimization of the layout for entire tool path and chip removal is not taken into accoun
16、t. Some of the studies used node numbers as design parameters. </p><p> In this study, a GA tool has been developed to find the optimal locator and clamp positions in 2D workpiece. Distances from the refere
17、nce edges as design parameters are used rather than FEA node numbers. Fitness values of real encoded GA chromosomes are obtained from the results of FEA. ANSYS has been used for FEA calculations. A chromosome library app
18、roach is used in order to decrease the solution time. Developed GA tool is tested on two test problems. Two case studies are given to illustrate t</p><p> (1) developed a GA code integrated with a commercia
19、l finite element solver;</p><p> (2) GA uses chromosome library in order to decrease the computation time;</p><p> (3) real design parameters are used rather than FEA node numbers;</p>
20、<p> (4) chip removal is taken into account while tool forces moving on the workpiece.</p><p> Genetic algorithms were first developed by John Holland. Goldberg [10] published a book explaining the th
21、eory and application examples of genetic algorithm in details. A genetic algorithm is a random search technique that mimics some mechanisms of natural evolution. The algorithm works on a population of designs. The popula
22、tion evolves from generation to generation, gradually improving its adaptation to the environment through natural selection; fitter individuals have better chances of transmit</p><p> In the algorithm, the
23、selection of the natural environment is replaced by artificial selection based on a computed fitness for each design. The term fitness is used to designate the chromosome’s chances of survival and it is essentially the o
24、bjective function of the optimization problem. The chromosomes that define characteristics of biological beings are replaced by strings of numerical values representing the design variables.</p><p> GA is r
25、ecognized to be different than traditional gradient based optimization techniques in the following four major ways [10]:</p><p> 1. GAs work with a coding of the design variables and parameters in the probl
26、em, rather than with the actual parameters themselves.</p><p> 2. GAs makes use of population-type search. Many different design points are evaluated during each iteration instead of sequentially moving fro
27、m one point to the next.</p><p> 3. GAs needs only a fitness or objective function value. No derivatives or gradients are necessary.</p><p> 4. GAs use probabilistic transition rules to find n
28、ew design points for exploration rather than using deterministic rules based on gradient information to find these new points.</p><p> In machining process, fixtures are used to keep workpieces in a desirab
29、le position for operations. The most important criteria for fixturing are workpiece position accuracy and workpiece deformation. A good fixture design minimizes workpiece geometric and machining accuracy errors. Another
30、fixturing requirement is that the fixture must limit deformation of the workpiece. It is important to consider the cutting forces as well as the clamping forces. Without adequate fixture support, machining ope</p>
31、<p> Common locating method for prismatic parts is 3-2-1 method. This method provides the maximum rigidity with the minimum number of fixture elements. A workpiece in 3D may be positively located by means of six p
32、oints positioned so that they restrict nine degrees of freedom of the workpiece. The other three degrees of freedom are removed by clamp elements. An example layout for 2D workpiece based 3-2-1 locating principle is show
33、n in Fig. 4.</p><p> Fig. 4. 3-2-1 locating layout for 2D prismatic workpiece</p><p> The number of locating faces must not exceed two so as to avoid a redundant location. Based on the 3-2-1 f
34、ixturing principle there are two locating planes for accurate location containing two and one locators. Therefore, there are maximum of two side clampings against each locating plane. Clamping forces are always directed
35、towards the locators in order to force the workpiece to contact all locators. The clamping point should be positioned opposite the positioning points to prevent the workpiece</p><p> Since the machining for
36、ces travel along the machining area, it is necessary to ensure that the reaction forces at locators are positive for all the time. Any negative reaction force indicates that the workpiece is free from fixture elements. I
37、n other words, loss of contact or the separation between the workpiece and fixture element might happen when the reaction force is negative. Positive reaction forces at the locators ensure that the workpiece maintains co
38、ntact with all the locators from the </p><p> In real design problems, the number of design parameters can be very large and their influence on the objective function can be very complicated. The objective
39、function must be smooth and a procedure is needed to compute gradients. Genetic algorithms strongly differ in conception from other search methods, including traditional optimization methods and other stochastic methods
40、[23]. By applying GAs to fixture layout optimization, an optimal or group of sub-optimal solutions can be obtained.</p><p> In this study, optimum locator and clamp positions are determined using genetic al
41、gorithms. They are ideally suited for the fixture layout optimization problem since no direct analytical relationship exists between the machining error and the fixture layout. Since the GA deals with only the design var
42、iables and objective function value for a particular fixture layout, no gradient or auxiliary information is needed [19].</p><p> The flowchart of the proposed approach is given in Fig. 5.</p><p&
43、gt; Fixture layout optimization is implemented using developed software written in Delphi language named GenFix. Displacement values are calculated in ANSYS software [24]. The execution of ANSYS in GenFix is simply done
44、 by WinExec function in Delphi. The interaction between GenFix and ANSYS is implemented in four steps:</p><p> (1) Locator and clamp positions are extracted from binary string as real parameters.</p>
45、<p> (2) These parameters and ANSYS input batch file (modeling, solution and post processing commands) are sent to ANSYS using WinExec function.</p><p> (3) Displacement values are written to a text
46、file after solution.</p><p> (4) GenFix reads this file and computes fitness value for current locator and clamp positions.</p><p> In order to reduce the computation time, chromosomes and fit
47、ness values are stored in a library for further evaluation. GenFix first checks if current chromosome’s fitness value has been calculated before. If not, locator positions are sent to ANSYS, otherwise fitness values are
48、taken from the library. During generating of the initial population, every chromosome is checked whether it is feasible or not. If the constraint is violated, it is eliminated and new chromosome is created. This process
49、</p><p> The written GA program was validated using two test cases. The first test case uses Himmelblau function [21]. In the second test case, the GA program was used to optimise the support positions of a
50、 beam under uniform loading.</p><p> 采用遺傳算法優(yōu)化加工夾具定位和加緊位置</p><p> 夾具用來(lái)定位和束縛機(jī)械操作中的工件,減少由于對(duì)確保機(jī)械操作準(zhǔn)確性的夾緊方案和切削力造成的工件和夾具的變形。傳統(tǒng)上,加工夾具是通過(guò)反復(fù)試驗(yàn)法來(lái)設(shè)計(jì)和制造的,這是一個(gè)既造價(jià)高又耗時(shí)的制造過(guò)程。為確保工件按規(guī)定尺寸和公差來(lái)制造,工件必須給予適當(dāng)?shù)亩ㄎ缓蛫A緊以確
51、保有必要開(kāi)發(fā)工具來(lái)消除高造價(jià)和耗時(shí)的反復(fù)試驗(yàn)設(shè)計(jì)方法。適當(dāng)?shù)墓ぜㄎ缓蛫A具設(shè)計(jì)對(duì)于產(chǎn)品質(zhì)量的精密度、準(zhǔn)確度和機(jī)制件的完飾是至關(guān)重要的。</p><p> 從理論上說(shuō),夾具原則對(duì)于定位所有的軸類零件是很令人滿意的。該方法具有最大的剛性與最少量的夾具元件。從動(dòng)力學(xué)觀點(diǎn)來(lái)看定位零件意味著限制了自由移動(dòng)物體的六自由度(三個(gè)平動(dòng)自由度和三個(gè)旋轉(zhuǎn)自由度)。在零件下部設(shè)置三個(gè)支撐來(lái)建立工件在垂直軸方向的定位。在兩個(gè)外圍邊緣放
52、置定位器旨在建立工件在水平x軸和y軸的定位。正確定位夾具的工件對(duì)于制造過(guò)程的全面準(zhǔn)確性和重復(fù)性是至關(guān)重要的。定位器應(yīng)該盡可能的遠(yuǎn)距離的分開(kāi)放置并且應(yīng)該放在任何可能的加工面上。放置的支撐器通常用來(lái)包圍工件的重力中心并且盡可能的將其分開(kāi)放置以維持其穩(wěn)定性。夾具夾子的首要任務(wù)是固定夾具以抵抗定位器和支撐器。不應(yīng)該要求夾子反抗加工操作中的切削力。</p><p> 對(duì)于給定數(shù)量的夾具元件,加工夾具合成的問(wèn)題是尋找?jiàn)A具優(yōu)
53、化布局或工件周圍夾具元件的位置。本篇文章提出一種優(yōu)化夾具布局遺傳算法。優(yōu)化目標(biāo)是研究一個(gè)二維夾具布局使工件不同位置上最大的彈性變形最小化。ANSYS程序以用于計(jì)算工件變形情況下夾緊力和切削力。本文給出兩個(gè)實(shí)例來(lái)說(shuō)明給出的方法。</p><p> 最近幾年夾具設(shè)計(jì)問(wèn)題受到越來(lái)越多的重視。然而,很少有注意力集中于優(yōu)化夾具布局設(shè)計(jì)。Menassa和Devries用FEA計(jì)算變形量使設(shè)計(jì)準(zhǔn)則要求的位點(diǎn)的工件變形最小化。
54、設(shè)計(jì)問(wèn)題是確定支撐器位置。Meyer和Liou提出一個(gè)方法就是使用線性編程技術(shù)合成動(dòng)態(tài)編程條件中的夾具。給出了使夾緊力和定位力最小化的解決方案。Li和Melkote用非線性規(guī)劃方法解決布局優(yōu)化問(wèn)題。這個(gè)方法使工件位置誤差最小化歸于工件的局部彈性變形。Roy和Liao開(kāi)發(fā)出一種啟發(fā)式方法來(lái)計(jì)劃最好的支撐和夾緊位置。Tao等人提出一個(gè)幾何推理的方法來(lái)確定最優(yōu)夾緊點(diǎn)和任意形狀工件的夾緊順序。Liao和Hu提出一種夾具結(jié)構(gòu)分析系統(tǒng)這個(gè)系統(tǒng)基于動(dòng)
55、態(tài)模型分析受限于時(shí)變加工負(fù)載的夾具—工件系統(tǒng)。本文也調(diào)查了夾緊位置的影響。Li和Melkote提出夾具布局和夾緊力最優(yōu)合成方法幫我們解釋加工過(guò)程中的工件動(dòng)力學(xué)。本文提出一個(gè)夾具布局和夾緊力優(yōu)化結(jié)合的程序。他們用接觸彈性建模方法解釋工件剛體動(dòng)力學(xué)在加工期間的影響。Amaral等人用ANSYS驗(yàn)證夾具設(shè)計(jì)的完整性。他們用3-2-1方法。ANSYS提出優(yōu)化分析。Tan等人通過(guò)力鎖合、優(yōu)化與有限建</p><p> 以
56、上大部分的研究使用線性和非線性編程方式這通常不會(huì)給出全局最優(yōu)解決方案。所有的夾具布局優(yōu)化程序開(kāi)始于一個(gè)初始可行布局。這些方法給出的解決方案在很大程度上取決于初始夾具布局。他們沒(méi)有考慮到工件夾具布局優(yōu)化對(duì)整體的變形。</p><p> GAs已被證明在解決工程中優(yōu)化問(wèn)題是有用的。夾具設(shè)計(jì)具有巨大的解決空間并需要搜索工具找到最好的設(shè)計(jì)。一些研究人員曾使用GAs解決夾具設(shè)計(jì)及夾具布局問(wèn)題。Kumar等人用GAs和神經(jīng)
57、網(wǎng)絡(luò)設(shè)計(jì)夾具。Marcelin已經(jīng)將GAs用于支撐位置的優(yōu)化。Vallapuzha等人提出基于優(yōu)化方法的GA,它采用空間坐標(biāo)來(lái)表示夾具元件的位置。夾具布局優(yōu)化程序設(shè)計(jì)的實(shí)現(xiàn)是使用MATLAB和遺傳算法工具箱。HYPERMESH和MSC / NASTRAN用于FE模型。Vallapuzha等人提出一些結(jié)果關(guān)于一個(gè)廣泛調(diào)查不同優(yōu)化方法的相對(duì)有效性。他們的研究表明連續(xù)遺傳算法提出了最優(yōu)質(zhì)的解決方案。Li和Shiu使用遺傳算法確定了夾具設(shè)計(jì)最優(yōu)
58、配置的金屬片。MSC/NASTRAN已經(jīng)用于適應(yīng)度值評(píng)價(jià)。Liao提出自動(dòng)選擇最佳夾子和夾鉗的數(shù)目以及它們?cè)诮饘倨系膴A具中的最優(yōu)位置。Krishnakumar和Melkote開(kāi)發(fā)了一種夾具布局優(yōu)化技術(shù),它是利用遺傳算法找到了夾具布局,由于整個(gè)刀具路徑中的夾緊力和加工力使加工表面變形量最小化。通過(guò)節(jié)點(diǎn)編號(hào)使定位器和夾具位置特殊化。一個(gè)內(nèi)置的有限元求解器研制成功。</p><p> 一些研究沒(méi)考慮到整個(gè)刀具路徑
59、的優(yōu)化布局以及磨屑清除。一些研究采用節(jié)點(diǎn)編號(hào)作為設(shè)計(jì)參數(shù)。</p><p> 在本研究中,開(kāi)發(fā)GA工具用于尋找在二維工件中的最優(yōu)定位器和夾緊位置。使用參考邊緣的距離作為設(shè)計(jì)參數(shù)而不是用FEA節(jié)點(diǎn)編號(hào)。真正編碼遺傳算法的染色體的健康指數(shù)是從FEA結(jié)果中獲得的。ANSSYS用于FEA計(jì)算。用染色體文庫(kù)的方法是為了減少解決問(wèn)題的時(shí)間。用兩個(gè)問(wèn)題測(cè)試已開(kāi)發(fā)的遺傳算法工具。給出的兩個(gè)實(shí)例說(shuō)明了這個(gè)開(kāi)發(fā)的方法。本論文的主要
60、貢獻(xiàn)可以概括為以下幾個(gè)方面:</p><p> ?。?) 開(kāi)發(fā)了遺傳算法編碼結(jié)合商業(yè)有限元素求解;</p><p> (2) 遺傳算法采用染色體文庫(kù)以降低計(jì)算時(shí)間;</p><p> (3) 使用真正的設(shè)計(jì)參數(shù),而不是有限元節(jié)點(diǎn)數(shù)字;</p><p> (4) 當(dāng)工具在工件中移動(dòng)時(shí)考慮磨屑清除工具。</p><p&g
61、t; 遺傳算法最初由John Holland開(kāi)發(fā)。Goldberg出版了一本書(shū),解釋了這個(gè)理論和遺傳算法應(yīng)用實(shí)例的詳細(xì)說(shuō)明。遺傳算法是一種隨機(jī)搜索方法,它模擬一些自然演化的機(jī)制。該算法用于種群設(shè)計(jì)。種群從一代到另一代演化,通過(guò)自然選擇逐漸提高了適應(yīng)環(huán)境的能力,更健康的個(gè)體有更好的機(jī)會(huì),將他們的特征傳給后代。</p><p> 該算法中,要基于為每個(gè)設(shè)計(jì)計(jì)算適合性,所以人工選擇取代自然環(huán)境選擇。適應(yīng)度值這個(gè)詞用
62、來(lái)指明染色體生存幾率,它在本質(zhì)上是該優(yōu)化問(wèn)題的目標(biāo)函數(shù)。生物定義的特征染色體用代表設(shè)計(jì)變量的字符串中的數(shù)值代替。</p><p> 被公認(rèn)的遺傳算法與傳統(tǒng)的梯度基礎(chǔ)優(yōu)化技術(shù)的不同主要有如下四種方式:</p><p> (1) 遺傳算法和問(wèn)題中的一種編碼的設(shè)計(jì)變量和參數(shù)一起工作而不是實(shí)際參數(shù)本身。</p><p> ?。?) 遺傳算法使用種群—類型研究。評(píng)價(jià)在每個(gè)
63、重復(fù)中的許多不同的設(shè)計(jì)要點(diǎn)而不是一個(gè)點(diǎn)順序移動(dòng)到下一個(gè)。</p><p> ?。?) 遺傳算法僅僅需要一個(gè)適當(dāng)?shù)幕蚰繕?biāo)函數(shù)值。沒(méi)有衍生品或梯度是必要的。</p><p> (4) 遺傳算法以用概率轉(zhuǎn)換規(guī)則來(lái)發(fā)現(xiàn)新設(shè)計(jì)為探索點(diǎn)而不是利用基于梯度信息的確定性規(guī)則來(lái)找到這些新觀點(diǎn)。</p><p> 加工過(guò)程中,用夾具來(lái)保持工件處于一個(gè)穩(wěn)定的操作位置。對(duì)于夾具最重要的
64、標(biāo)準(zhǔn)是工件位置精確度和工件變形。一個(gè)良好的夾具設(shè)計(jì)使工件幾何和加工精度誤差最小化。另一個(gè)夾具設(shè)計(jì)的要求是夾具必須限制工件的變形??紤]切削力以及夾緊力是很重要的。沒(méi)有足夠的夾具支撐,加工操作就不符合設(shè)計(jì)公差。有限元分析在解決這其中的一些問(wèn)題時(shí)是一種很有力的工具。</p><p> 軸類零件常見(jiàn)的定位方法是3-2-1方法。該方法具有最大剛體度以及最小夾具元件數(shù)。在三維中一個(gè)工件可能會(huì)通過(guò)六自由度定位方法快速定位為了
65、限制工件的九個(gè)自由度。其他的三個(gè)自由度通過(guò)夾具元件消除了。</p><p> 定位面得數(shù)量不得超過(guò)兩個(gè)避免冗余的位置。基于3-2-1的夾具設(shè)計(jì)原則有兩種精確的定位平面包含于兩個(gè)或一個(gè)定位器。因此,在兩邊有最大的夾緊力抵抗每個(gè)定位平面。夾緊力總是指向定位器為了推動(dòng)工件接觸到所有的定位器。定位點(diǎn)對(duì)面應(yīng)定位夾緊點(diǎn)防止工件由于夾緊力而扭曲。因?yàn)榧庸ちρ刂庸っ?,所以有必要確保定位器的反應(yīng)力在所有時(shí)間內(nèi)是正的。任何負(fù)面的
66、反應(yīng)力表示工件從夾具元件中脫離。換句話說(shuō),當(dāng)反應(yīng)力是負(fù)的時(shí)候,工件和夾具元件之間接觸或分離的損失可能發(fā)生。定位器內(nèi)正的反應(yīng)力確保工件從切削開(kāi)始到結(jié)束都能接觸到所有的定位器。夾緊力應(yīng)該充分束縛和定位工件且不導(dǎo)致工件的變形或損壞。本文不考慮夾緊力的優(yōu)化。</p><p> 在實(shí)際設(shè)計(jì)問(wèn)題中,設(shè)計(jì)參數(shù)的數(shù)量可能很大并且它們對(duì)目標(biāo)函數(shù)的影響會(huì)是非常復(fù)雜的。目標(biāo)函數(shù)曲線必須是光滑的并且需要一個(gè)程序計(jì)算梯度。遺傳算法在理念
67、上遠(yuǎn)不同于其他的探究方法,它們包括傳統(tǒng)的優(yōu)化方法和其他隨機(jī)方法。通過(guò)運(yùn)用遺傳算法來(lái)對(duì)夾具優(yōu)化布局,可以獲得一個(gè)或一組最優(yōu)的解決方案。</p><p> 本項(xiàng)研究中,最優(yōu)定位器和夾具定位使用遺傳算法確定。它們是理想的適合夾具布局優(yōu)化問(wèn)題的方法因?yàn)闆](méi)有直接分析的關(guān)系存在于加工誤差和夾具布局中。因?yàn)檫z傳算法僅僅為一個(gè)特別的夾具布局處理設(shè)計(jì)變量和目標(biāo)函數(shù)值,所以不需要梯度或輔助信息。</p><p&
68、gt; 使用開(kāi)發(fā)的命名為GenFix的Delphi語(yǔ)言軟件來(lái)實(shí)現(xiàn)夾具布局優(yōu)化。位移量用ANSYS軟件計(jì)算。通過(guò)WinExec功能在GenFix中運(yùn)行ANSYS很簡(jiǎn)單。GenFix和ANSYS之間相互作用通過(guò)四部實(shí)現(xiàn):</p><p> ?。?) 定位器和夾具位置從二進(jìn)制代碼字符串中提取作為真正的參數(shù)。</p><p> ?。?) 這些參數(shù)和ANSYS輸入批處理文件(建模、解決方案和后置處
69、理)用WinExec功能傳給ANSYS。</p><p> ?。?) 解決后將位移值寫(xiě)成一個(gè)文本文件。</p><p> ?。?) GenFix讀這個(gè)文件并為當(dāng)前定位器和夾緊位置計(jì)算適應(yīng)度值。</p><p> 為了減少計(jì)算量,染色體與適應(yīng)度值儲(chǔ)存在一個(gè)文庫(kù)里以備進(jìn)一步評(píng)估。GenFix首先檢查是否當(dāng)前的染色體的適應(yīng)度值已經(jīng)在之前被計(jì)算過(guò)。如果沒(méi)有,定位器位置被送
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--采用遺傳算法優(yōu)化加工夾具定位和加緊位置.doc
- 外文翻譯--采用遺傳算法優(yōu)化加工夾具定位和加緊位置.doc
- 采用遺傳算法優(yōu)化加工夾具定位和加緊位置.docx
- (節(jié)選)夾具設(shè)計(jì)外文翻譯---采用遺傳算法優(yōu)化加工夾具定位和加緊位置
- (節(jié)選)夾具設(shè)計(jì)外文翻譯---采用遺傳算法優(yōu)化加工夾具定位和加緊位置
- 采用遺傳算法優(yōu)化加工夾具定位和加緊位置.docx
- 夾具設(shè)計(jì)外文翻譯---采用遺傳算法優(yōu)化加工夾具定位和加緊位置(英文)
- 夾具設(shè)計(jì)外文翻譯---采用遺傳算法優(yōu)化加工夾具定位和加緊位置.docx
- 夾具設(shè)計(jì)外文翻譯---采用遺傳算法優(yōu)化加工夾具定位和加緊位置.docx
- (節(jié)選)夾具設(shè)計(jì)外文翻譯---采用遺傳算法優(yōu)化加工夾具定位和加緊位置
- 外文原文---采用遺傳算法優(yōu)化加工夾具定位和加緊位置.doc
- 外文翻譯--采用遺傳算法優(yōu)化加工夾具定位和加緊位置 英文版
- 外文原文---采用遺傳算法優(yōu)化加工夾具定位和加緊位置.doc
- 中文翻譯 采用遺傳算法優(yōu)化加工夾具定位和加緊位置.doc
- 中文翻譯 采用遺傳算法優(yōu)化加工夾具定位和加緊位置.doc
- 采用遺傳算法優(yōu)化加工夾具定位和加緊位置【中文4477字】
- 采用遺傳算法優(yōu)化加工夾具定位和加緊位置【中文4477字】
- 機(jī)械畢業(yè)設(shè)計(jì)英文外文翻譯55采用遺傳算法優(yōu)化加工夾具定位和加緊位置
- 外文翻譯(中文英文都在里面)采用遺傳算法優(yōu)化加工夾具定位和加緊位置
- 機(jī)械畢業(yè)設(shè)計(jì)英文外文翻譯55采用遺傳算法優(yōu)化加工夾具定位和加緊位置
評(píng)論
0/150
提交評(píng)論