版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p><b> Appendix</b></p><p> Challenges and Opportunities in Automotive Transmission Control </p><p> Zongxuan Sun and Kumar Hebbale </p><p> Research and Devel
2、opment Center </p><p> General Motors Corporation </p><p> Warren, MI 48090</p><p> Abstract: Automotive transmission is a key element in the powertrain that connects
3、the power source to the wheels of a vehicle. To improve fuel economy, reduce emission and enhance driving performance, many new technologies have been introduced in the transmission area in rec
4、ent years. This paper first reviews different types of automotive transmissions and explains their unique control characteristics. We then address the challenges facing automoti</p><p> Introductio
5、n to the Latest Automotive Transmission Technologies</p><p> To improve fuel economy, reduce emission and enhance performance, automotive manufacturers have been developing new technologies
6、 for powertrain systems. In the transmission area, emerging technologies [1] such as continuously variable transmission (CVT), dual clutch transmission (DCT), automated manual transmission (AMT) and elec
7、trically variable transmission (EVT) have appeared in the market, which is traditionally dominated by step gear automatic tr</p><p> The basic function of any type of automotive transm
8、ission is to transfer the engine torque to the vehicle with the desired ratio smoothly and efficiently. The most common control devices inside the transmission are clutches and hydraulic pistons. Suc
9、h clutches could be hydraulic actuated, motor driven or actuated using other means (see Figure 1). Therefore clutch/piston control is essential for transmission operation. In both DCT and AMT, clutch control is the key
10、 t</p><p> Figure 1. Schematic Diagram of a Clutch</p><p> With the traditional control system in an automatic transmission with clutch-to-clutch shifts, the oncoming clutch fill process is a
11、major source of uncertainty and it makes the clutch coordination during the shift a difficult task. The fill time of the oncoming clutch varies due to many factors, such as, fluid temperature, solenoid v
12、alve characteristics, line pressure variations, and time elapsed between shifts. The commanded fill pressure and the commanded fill time are cri</p><p> Figure 2. Variations in Clutch Fill Process</p
13、><p> Figure 3. Effect of Clutch Overfill on an Upshift</p><p> Currently in most clutch-to-clutch shift production transmissions, the clutch coordination is accomplished by a combin
14、ation of open-loop, event-driven, and feedback control schemes. Transmission input and output speeds are the primary measured variables used in this control. An adaptive system is used to compensate for shift-to-shif
15、t variations and build-to-build variations [2]. Recently, an integrated torque based approach using both engine and transmission handles has</p><p> The automated manual transmissions (AMT) have b
16、ecome popular in Europe. In North America, their potential use is limited because of the torque interruption during shifts that is inherent to their designs. An offshoot of the AMT is the dual
17、 input clutch transmissions (DCT), which use two input clutches – one for odd gears and one for even gears. DCTs can transmit torque continuously through the shift. All the control issues and challenges d
18、uring launch </p><p> In a friction launch (starting clutch) transmission, the absence of the torque converter leaves the driveline with no hydraulic damping, and consequently, poses man
19、y control challenges including vehicle launch feel, undamped behavior during shifts and tip-in / tip-out maneuvers. Without using expensive torque or pressure sensors, the control of a clutch emu
20、lating a torque converter is a major challenge. Both hydraulic clutch [3] and magneto rh</p><p> Continuously variable transmissions (CVT) enable the engine to operate in a wide range of sp
21、eed and load conditions independently from the speed and load requests of the vehicle [4]. This feature allows the engine to operate in the optimal region virtually independent of the vehicle spee
22、d to maximize the fuel efficiency. Different types of CVT have appeared in the market. The belt and chain drive CVTs use the hydraulic piston to control the sheave</p><p> Figure 4. Effect
23、of Controlled Damping after an Upshift</p><p> Electrically variable transmissions (EVT) have appeared in the market recently. The advantages of using electric machines, namely motors/generators, with
24、 planetary gear sets include flexibility, controllability, and better performance. Great efforts have been made to extend speed ratio coverage by exploring various planetary gear train arrangement
25、s and by exploring regime shift similar to that used in step transmissions. These designs, in general, ar</p><p> Transmission Control Algorithms and Hardware Development</p><p>
26、; Look-up tables with calibrated variables are widely used in automotive transmission control. With the increased functionalities and electronic components, system calibration complexity goes up quickly. This is ca
27、used not only by the electronic control of the transmission, but also the coordination with engine and other components in the driveline. For example, with the increasing number of gear ratios
28、 in automatic transmissions, the number of variables to </p><p> As more number of speeds is added to the transmissions, shift schedule gets more complicated. Since traditional shift sc
29、hedule only considers vehicle speed and throttle angle to determine shift points, shift busyness has become a concern under certain road conditions, such as hilly terrains. For example, during a winding uphill drivin
30、g, the driver releases the gas pedal before entering the curve to reduce vehicle speed, and traditional shift schedule may perform an</p><p> Figure 5. Block Diagram of the Gear Shift Scheduli
31、ng Algorithm</p><p> To accommodate the ever-increasing demand for computational power, sensing and actuation capabilities, transmission control hardware has been undergoing many changes. Those
32、 changes involve all three levels of complexities: the sensing level, the actuation level, and the system level. At the sensing level, new sensing technologies have been pursued to either improve the performance and
33、 efficiency of current hardware or enable new actuation technologies. Pressure switche</p><p> 3. Conclusions</p><p> In order to realize maximum fuel economy benefit and provide su
34、perior performance, research and development in both control software/algorithm and hardware are required for the automotive transmissions. With the enhanced functionality and increased complexity i
35、n both software and hardware, system integration is the key for successful transmission development.</p><p> References:</p><p> 1. Wagner, G., “Application of Transmission Systems f
36、or Different Driveline Configurations in Passenger Cars”, SAE Technical Paper 2001-01-0882. </p><p> 2. Hebbale, K.V. and Kao, C.-K., "Adaptive Control of Shifts in Automatic Transmissions,&
37、quot; Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, 1995. </p><p> 3. Kao, C. K., Smith, A. L. and Usoro, P. B., “Fuel Econ
38、omy and Performance Potential of a Five-Speed 4T60-E Starting Clutch Automatic Transmission Vehicle”, SAE Technical Paper 2003-01-0246.</p><p> 4. Kluger, M. and Fussner, D., “An Overvi
39、ew of Current CVT Mechanisms, Forces and Efficiencies”, SAE Technical Paper 970688. </p><p> 5. Raghavan, M. and Raghavan, S., "Kinematic and dynamic analysis of the half-toroidal traction drive
40、variator," Proceedings of the 2002 Global Powertrain Congress, Detroit, MI, September 24-27, 2002. </p><p> 6. Tanaka, H. and Eguchi, M., “ Stability of a Speed Ratio Control Servo-Mechani
41、sm for a Half-Toroidal Traction Drive CVT,” JSME International Journal, Series C, Vol. 36, No. 1, 1993. </p><p> 7. Hebbale, K.V., and Carpenter, M.E., "Control of the Geared Neutral Point
42、 in a Traction Drive CVT," Proceedings of the 2003 American Control Conference, Denver, CO, 2003. </p><p> 8. Tsai, L. W., Schultz, G., "A Motor-Integrated Parallel Hybrid Transmissio
43、n," Journal of Mechanical Design, Transactions of the ASME, Vol. 126, September 2004. </p><p> 9. Ai, X., Mohr, T., and Anderson, S., "An Electro-Mechanical Infinitely Variable
44、Speed Transmission," SAE Technical Paper 2004-01-0354. </p><p> 10. Burns, L., McCormick, B., and Borroni-Bird, C., "Vehicle of Change – How fuel-cell cars could be the catalyst for
45、a cleaner tomorrow," Scientific American, October 2002. </p><p> 11. Furry, S. and Kainz, J., “Rapid Algorithm Development Tools Applied to Engine Management Systems”, SAE Technical P
46、aper 980799.</p><p> 12. Stuhler, H., Kruse, T., Stuber, A., Gschweitl, Piock, W., Pfluegl, H. and Lick, P., “Automated Model Based GDI Engine Calibration Adaptive Online DOE Approach”
47、, SAE Technical Paper 2002-01-0708.</p><p> 13. Osawa, M., Hibino, R., Yamada, M., Kono, K. and Kobiki, Y., “Application of ∞H Control Design to Slip Control System for Torque Converter Clutch”, The
48、First IFAC Workshop on Advabces in Automotive Control, pp.150-155, Ascona, Switzerland, March, 1995. </p><p> 14. Zheng, Q., Srinivasan, K. and Rizzoni, G., “Dynamic Modeling and Character
49、ization of Transmission Response for Controller Design”, SAE Technical Paper 981094. </p><p> 15. Liu, F., Li, Y., Zhang, J., Huang, H., Zhao, H., “Robust Control for Automated Clutch of
50、 AMT Vehicle”, SAE Technical Paper 2002-01-0933.</p><p> 16. Meyer, S. and Greff, A., “New Calibration Methods and Control Systems with Artificial Neural Networks”, SAE Technical Paper 2002-01-
51、1147.</p><p> 17. Qin, G., Ge, A., and Lee, J., "Knowledge-Based Gear-Position Decision," IEEE Transactions on Intelligent Transportation Systems, Vol. 5, No. 2, June 2004. </
52、p><p> 18. Tani, M., Yamada, K., Yoshida, H., Hayafune, K., Hatta, K. and Yoshida, S., “A Study on Adaptive Automatic Transmission Control”, SAE Technical Paper 925223. </p><p> 19.
53、 Kawai, M., Aruga, H., Iwatsuki, K., Ota, T. and Hamada, T., “Development of Shift Control System for Automatic Transmission Using Information From a Vehicle Navigation System”, SAE Technical Paper
54、1999-01-1095. </p><p> 20. Nelles, O., “IntelligenTip: A Learnnig Driving Strategy for Automated Transmission”, SAE Technical Paper 2003-01-0534. </p><p> 21. Bessho, M., Ishibashi,
55、 K., Arai, H. and Tatumi, T., “High Reliability High Pressure Sensor for Automotive Use”, SAE Technical Paper 870289. </p><p> 22. Fleming, W. and Wood, P, “Noncontact Miniature Torque Sensor for A
56、utomotive Application”, SAE Technical Paper 820206. </p><p> 23. Kilmartin, B., “Magnetoelastic Torque Sensor Utilizing a Thermal Sprayed Sense-Element for Automotive Transmission applications
57、”, SAE Technical Paper 2003-01-0711. </p><p> 24. Biter, W., Hess, S and Oh, S., “Development of An Inductively Coupled Magnetoelastic Torque Sensor”, SAE Technical Paper 2003-01-0193. </p&
58、gt;<p> 25. Jung, J., Ryu, D., Jeong, K. and Chang, K., “Development of A Clutch Disk Torque Sensor for An Automobile”, SAE Technical Paper 2001-01-0869. </p><p> 26. Cho, B., Jung, G
59、., Hur, J. and Lee, K., “Modeling of Proportional Control Solenoid Valve for Automatic Transmission Using System Identification Theory”, SAE Technical Paper 1999-01-1061. </p><p> 27. Cui, P., Bu
60、rton, R. T. and Ukrainetz, P. R., “Development of a High Speed On/Off Valve”, SAE Technical Paper 911815.</p><p> 28. Turner, A. J. and Ramsay, K., “Review and Development of Electrome
61、chanical Actuators for Improved Transmission Control and Efficiency”, SAE Technical Paper 2004-01-1322. </p><p> 29. Duclos, T, “Design of Devices Using Electrorheological Fluids”, SAE Techni
62、cal Paper 881134.</p><p> 30. Sakai, Y., “The ECVT Electro Continuously Variable Transmission”, SAE Technical Paper 880481. </p><p> 31. Wang, J. and Meng, G., 2001, “Magnetor
63、heological Fluid Devices: Principles, Charateristics and Applications in Mechanical Engineering”, Journal of Materials, Design and Applications, Vol 215, pp.165-174. </p><p> 32. Neuffer, K.,
64、 Engelsdorf, K. and Brehm, W., “Electronic Transmission Control – From Stand Alone Compenets to Mechatronic Systems”, SAE Technical Paper 960430. </p><p> 33. De Vos, G. and Helton D., “Migr
65、ation of Powertrain Electronics to On-Engine and On-Transmission”, SAE Technical Paper 1999-01-0159. </p><p> 34. Gander, H., Loibl, J. and Ulm, M., “Gearbox-Integrated Mechatronic Control
66、: A New Approach to Handle Powertrain Complexity”, SAE Technical Paper 2000-01-1159.</p><p> 35. Nagur, N. and Takemura, S., “Development of Small, High Performance Electronics Control Units wit
67、h Metal Based Printed Circuit Board”, SAE Technical Paper 961023.</p><p><b> 附錄1</b></p><p> 汽車變速器控制面臨的機遇和挑戰(zhàn)</p><p> Zongxuan Sun and Kumar Hebbale</p>&l
68、t;p> Research and Development Center</p><p> General Motors Corporation</p><p> Warren, MI 48090</p><p> 摘要:在動力系統(tǒng)中,汽車變速器是連接動力源和車輪的關(guān)鍵部位。為了提高燃油經(jīng)濟性、降低排放及增強驅(qū)動性能,近幾年來,許多新的技術(shù)已經(jīng)在變速器
69、領(lǐng)域出現(xiàn)了。本文首先介紹了不同類型的汽車變速器,并闡述了它們各自獨特的控制特點。接著,我們又討論了在汽車變速器控制上來自三個方面的挑戰(zhàn):校準(zhǔn)、轉(zhuǎn)換調(diào)度,傳感、驅(qū)動和電子技術(shù)。同時,我們研究了如何進一步改善傳動系統(tǒng)性能。</p><p> 1.介紹先進的汽車變速器技術(shù)</p><p> 為了提高燃油經(jīng)濟性,減少廢氣排放及提高性能,汽車制造商一直都在開發(fā)新的動力傳動技術(shù)。在變速器領(lǐng)域,新興
70、的技術(shù),如傳動比連續(xù)變化的無級變速器(CVT),雙離合器變速箱(DCT),自動手動的綜合變速器(AMT)和電動無級變速器(EVT)已經(jīng)在由齒輪自動變速器(AT)和手動變速器(MT)居于主導(dǎo)地位的市場上出現(xiàn)了。在眾多不同的開發(fā)這些新型變速器的技術(shù)挑戰(zhàn)中,系統(tǒng)動力和控制在提供優(yōu)越的性能的同時,對實現(xiàn)燃油經(jīng)濟性及排放優(yōu)勢也起到了關(guān)鍵的作用。</p><p> 任何形式的自動變速器的基本功能就是將發(fā)動機的轉(zhuǎn)矩平穩(wěn)有效地
71、傳遞到具有要求的傳動比的汽車上。最常見的變速器控制裝置是離合器和液壓活塞。這些離合器由液力驅(qū)動,馬達驅(qū)動或由其他方式驅(qū)動(見圖1)。因此,離合器/活塞控制對傳動操作是必不可少的。在DCT和AMT中,離合器是確保轉(zhuǎn)矩平穩(wěn)傳遞的關(guān)鍵。在CVT中,液壓活塞控制對系統(tǒng)性能和設(shè)備的耐用性都很重要。在許多新型自動變速器(AT)中,采用離合器對離合器轉(zhuǎn)換降低了成本、改進了包裝。這不僅涉及到即將到來的和就要過時的離合器,而且涉及到它們之間正時和協(xié)調(diào)的電
72、子控制。除了淘汰這種轉(zhuǎn)變閥門和蓄電池等,離合器對離合器控制也減少了滑行離合器和自由輪,大大簡化了機械傳動的內(nèi)容。取消這些裝置使對離合器到離合器轉(zhuǎn)換的控制成為一種挑戰(zhàn)。</p><p> 伴隨著具有離合器對離合器轉(zhuǎn)換的自動變速器的傳統(tǒng)控制系統(tǒng),這種即將到來的離合器填充過程是一個不確定性的主要來源,它使在轉(zhuǎn)變過程中協(xié)調(diào)離合器成為一項艱巨</p><p> 的任務(wù)。即將到來的離合器填充時間會
73、受許多因素的影響而發(fā)生變化,如液體的溫度,</p><p> Return Spring</p><p><b> 回位彈簧</b></p><p><b> Piston</b></p><p><b> 活塞</b></p><p> Hy
74、draulic Fluid Inlet</p><p><b> 液壓流體入口</b></p><p> Clutch Pack</p><p><b> 離合器踏板</b></p><p><b> 圖1 離合器示意圖</b></p><p>
75、 電磁閥的特點,線壓力變化和轉(zhuǎn)變過程中流逝的時間。要求的填充壓力和填充時間對于在轉(zhuǎn)變過程中實現(xiàn)良好的填充和平穩(wěn)的開始過程是至關(guān)重要的。即使在計算這兩個參數(shù)的過程中發(fā)生的微小錯誤也可能導(dǎo)致過滿或底部填充,就像圖2示意的那樣。有些算法已發(fā)展到能夠探測出使用高速信號填沖的終端,但是它們中沒有一個被證明是可靠的及足夠快去防止尖峰過滿。圖3顯示了在掛高速擋的過程中即將發(fā)生的離合器過滿的例子。那個即將來臨的離合器壓有輕微的溢流現(xiàn)象,這會產(chǎn)生轉(zhuǎn)換過
76、程中的連鎖反應(yīng),導(dǎo)致引擎下拉和輸出轉(zhuǎn)矩的大幅度下降。在這個例子中為了避免這些連鎖反應(yīng)需要更強大的離合器控制。盡管在未來的調(diào)整中可以使用適應(yīng)性計劃去更正過滿現(xiàn)象,但是真正的挑戰(zhàn)是如何在第一地點阻止它發(fā)生。</p><p> 圖2 離合器充滿過程中的變化</p><p> 在目前大多數(shù)離合器對離合器轉(zhuǎn)變的變速器中,由于開環(huán)控制、驅(qū)動控制和反饋控制方法的結(jié)合,離合器的協(xié)調(diào)配合得以實現(xiàn)。在這種
77、控制中,變速器的輸入輸出轉(zhuǎn)速是主要的測量對象。一個自適應(yīng)系統(tǒng)主要用于補償轉(zhuǎn)換和開發(fā)過程中的變化[2]。近來,已經(jīng)有人提出同時使用發(fā)動機和變速器產(chǎn)生混合扭矩的想法。這種產(chǎn)生扭矩的方法所面臨的主要難題在于如何保證離合器協(xié)調(diào)和持續(xù)的轉(zhuǎn)換質(zhì)量。</p><p> 自動手動變速器(AMT)在歐洲已經(jīng)開始受到歡迎。由于自身的設(shè)計使得在轉(zhuǎn)換過程中扭矩中斷,造成這種變速器在北美潛在的發(fā)展空間變得有限。AMT的一個分支是雙輸入離
78、合器變速箱(DCT),它使用兩個輸入離合器—一個適用于具有單數(shù)齒輪的變速箱,一個適用于具有雙數(shù)齒輪的變速箱。DCT可以在轉(zhuǎn)換過程中持續(xù)傳輸扭矩。在面臨摩擦啟動(FL)的啟動和轉(zhuǎn)換過程中,DCT遇到的所有控制方面的問題和挑戰(zhàn)也在于它自身的設(shè)計。一臺DCT比傳統(tǒng)的液力變矩器自動變速器需要更多的校核工作,同時人們也希望DCT能夠在生產(chǎn)和操控方面所需要的完善工作更少。另一方面,因為DCT需要更多的校準(zhǔn)處理,所以它們可以不斷變化以適用于不同規(guī)格和
79、不同行駛條件的汽車。在DCT和FL中,較少的變矩器傳輸在控制方面面臨的一個挑戰(zhàn)顯示在圖4中。具有阻尼傳動系統(tǒng)的短暫變化,比如說轉(zhuǎn)換過程,能夠觸發(fā)傳動系統(tǒng)不良震蕩,正如明顯的輸出轉(zhuǎn)矩跟蹤。</p><p> 圖3 離合器溢流對升擋的影響</p><p> 在摩擦啟動(單向離合器)的傳輸中,沒有液力變矩器使得液壓傳動系統(tǒng)沒有阻尼,由此帶來許多控制方面的挑戰(zhàn),包括汽車啟動時駕駛員的感覺,以
80、及在轉(zhuǎn)換和模擬過程中的阻尼情形。不使用昂貴的扭矩或壓力傳感器,操控一臺具有模擬變矩器的離合器是一個重大挑戰(zhàn)。而對于液壓離合器和磁流變液離合器實現(xiàn)的可能性,研究人員已經(jīng)進行了調(diào)查研究。</p><p> 傳動比連續(xù)變化的無級變速器(CVT)使得發(fā)動機能夠在很大的速度和承載范圍內(nèi)運轉(zhuǎn),而不受車輛的速度和承載要求的限制[4]。此功能允許發(fā)動機能夠不受車輛速度的影響,而在最佳的范圍內(nèi)運轉(zhuǎn)以實現(xiàn)最大限度地提高燃油利用率。
81、市場上已經(jīng)出現(xiàn)了不同種類的無級變速器。皮帶和鏈傳動的無級變速器使用液壓活塞來保證繩輪在變速器中的地位和投入產(chǎn)出比。主要的控制挑戰(zhàn)是在力求用快速的比例控制實現(xiàn)最大限度地提高燃油經(jīng)濟性的同時,如何保持最佳的加緊力去防止打滑。環(huán)形牽引驅(qū)動變速器(TCVT)已經(jīng)被許多制造商視為鏈或帶式無級變速器的理想的替代品。環(huán)形牽引驅(qū)動變速器能夠提供更大的扭矩和更快的比例變化能力。一個半環(huán)形的無級變速器在開環(huán)運作的情況下</p><p&g
82、t; 圖4 受控阻尼上移后的效果</p><p> 是不穩(wěn)定的,從而需要一個速比控制系統(tǒng)[5]。此外,當(dāng)無級變速器采用齒輪傳動中性的概念時,它就不再需要啟動裝置,例如液力變矩器和打滑離合器。在齒輪中性傳動時,速比控制變得不足,從而需要對輸出力矩進行控制。在環(huán)形牽引驅(qū)動變速器中,控制方面的挑戰(zhàn)凸顯在[6-7]。</p><p> 電動無級變速器(EVT)最近在市場上已經(jīng)出現(xiàn)了。使用具
83、有行星齒輪裝置的電動機械,即電動機/發(fā)電機,它的優(yōu)點包括靈活性,可控性和更好的性能。通過探索行星齒輪傳動方式和與在步傳輸中類似的轉(zhuǎn)變原則盡最大的努力來擴大速比范圍。這些設(shè)計,一般來說,是相當(dāng)復(fù)雜的工程,因為它們要涉及許多的行星齒輪裝置和離合器。精心的控制計劃必須確保相應(yīng)的轉(zhuǎn)換原則和避免在轉(zhuǎn)換期間輸出端扭矩的突然變化[8-9]。這種控制算法將最終決定司機感知混合動力汽車的性能如何,特別是當(dāng)車輛在電動機和發(fā)動機之間來回切換時他們是否能準(zhǔn)確感
84、覺到。在傳統(tǒng)的內(nèi)燃機逐漸被燃料電池推進系統(tǒng)取代之前,混合動力汽車可能只是一個權(quán)宜之計。在燃料電池汽車中,電輪轂電機內(nèi)可完全消除對變速器的需要和改變未來的主導(dǎo)技術(shù)[10]。</p><p> 2.傳輸控制算法和硬件發(fā)展</p><p> 具有矯正變量的查詢表廣泛應(yīng)用于汽車變速器控制中。隨著功能和電子部件的增加,系統(tǒng)校準(zhǔn)的復(fù)雜性上升很快。這不僅是由傳輸中的電子控制造成的,而且與發(fā)動機和其它
85、部件在動力傳動系統(tǒng)中的協(xié)調(diào)性也有關(guān)系。例如,隨著自動變速器中齒輪傳動比數(shù)的增加,實現(xiàn)在任何行駛條件下平穩(wěn)轉(zhuǎn)換的校正變量的數(shù)量就會迅速上升。為了大大降低開發(fā)時間,提高性能,在校正過程中,自動化和系統(tǒng)化的方法是必需要的。首先,對自動調(diào)節(jié)過程進行研究使其在很少或沒有人為干擾的條件下能夠自動校正變速器。研究人員開發(fā)了一套自動化的工具裝備用來校正在無人干涉條件下的汽車動力總成[11]。為了標(biāo)定GDI發(fā)動機,研究人員開發(fā)了一種自適應(yīng)網(wǎng)絡(luò)設(shè)計實驗(D
86、OE)方法[12]。這種方法能為具有不規(guī)則形狀的操作區(qū)域的非線性系統(tǒng)進行高效的實驗設(shè)計。同樣的方法也可以應(yīng)用于汽車傳輸校準(zhǔn)。其次,人們提出了將控制模型視為一個推動者的想法,目的在于減少校準(zhǔn)變量數(shù),以及校準(zhǔn)的時間和精力。然而,環(huán)境的不確定性和操作范圍的廣泛是系統(tǒng)穩(wěn)定性方面的一個主要挑戰(zhàn)。傳輸溫度可以在40攝氏度到150攝氏度之間變化,這反過來又影響到自動變速器流體的屬性。從車輛完全停下來到高速大負荷的運轉(zhuǎn),</p><
87、p> 隨著變速器速比數(shù)的增加,換擋規(guī)律也變得更加復(fù)雜了。由于傳統(tǒng)的換擋規(guī)律只考慮到用汽車的速度和節(jié)氣門開度來確定換擋位置,所以換擋復(fù)雜已經(jīng)成為在某些情況下,如丘陵地形條件,的關(guān)注焦點。例如,在蜿蜒上坡的道路上行駛時,駕駛員在進入曲線行駛之前要釋放加速踏板來降低車速,而傳統(tǒng)的換擋規(guī)律為了響應(yīng)油門的變化可能會換高速擋。但蜿蜒路段過后,司機需要踩加速踏板提高車速和執(zhí)行換低擋操作。同樣在下坡行駛時,一旦節(jié)氣門開度減小,傳統(tǒng)的換擋系統(tǒng)會掛
88、高擋,結(jié)果降低了發(fā)動機制動性能。由于一些因素,如道路等級、轉(zhuǎn)向角度、汽車加速等,既能滿足客戶要求,又有良好的燃油經(jīng)濟性的靈活的換擋系統(tǒng)必須得到開發(fā)研究。采用模糊集和神經(jīng)網(wǎng)絡(luò)技術(shù)來避免換擋繁雜已經(jīng)在以往的文獻[17-18]中得到了探討。大多數(shù)呈現(xiàn)在文獻中的自適應(yīng)換擋點算法需要搜集大量車輛的信息和車輛行駛的道路坡度。這些文獻很少提供可靠的質(zhì)量估計算法。如果有大量適用的信息,那么道路等級的估計直截了當(dāng)。近來,汽車導(dǎo)航系統(tǒng)用于提供一些在換擋過程
89、中關(guān)于道路形狀和條件的預(yù)覽信息[19]。針對換擋系統(tǒng)的近期工作增加了模糊邏輯系統(tǒng)的反饋研究,實時更新隸屬函數(shù)以更好地滿足不同的駕駛模式</p><p> 為了滿足對計算能力、遙感和驅(qū)動能力不斷增加的需求,變速器控制硬件已經(jīng)發(fā)生了許多變化。這些變化包括三個方面的復(fù)雜性:遙感水平、驅(qū)動水平和系統(tǒng)水平。在遙感水平方面,新的遙感技術(shù)用于要么提高目前硬件的性能和效率,要么用于啟動新的驅(qū)動技術(shù)。壓力調(diào)節(jié)器和溫度傳感器在目前
90、生產(chǎn)的變速器上比較適用。為了提高變速器的性能,壓力傳感器和扭矩傳感器是必不可少的。將這些傳感器引用到生產(chǎn)單元的主要挑</p><p> 戰(zhàn)是生產(chǎn)成本和耐用性。圧阻式半導(dǎo)體壓力傳感器是汽車應(yīng)用水平的評價標(biāo)準(zhǔn)[21]。它</p><p> 圖5 齒輪移位調(diào)度算法框圖</p><p> 宣稱測量可達到3.5兆帕,在滿刻度的百分之一范圍左右。早期的扭矩傳感器的研究可
91、以追溯到八十年代初期,那時研究人員[22]為自動變速器研究了一種非接觸式微型扭矩傳感器。最近許多研究人員對磁扭矩傳感器進行了研究[23-24]。把材料應(yīng)力轉(zhuǎn)化成磁性能的變化的反磁現(xiàn)象用于測量傳輸?shù)呐ぞ亍榱丝朔兯倨髦械膼毫迎h(huán)境,特種涂料技術(shù)已經(jīng)得到開發(fā)以保護傳感器部件。帶有扭矩傳感器的離合器盤被提議用在汽車上[25]。安裝在離合器盤上的傳感器元件用于實現(xiàn)精確可靠的測量。在驅(qū)動級中,電磁閥控制技術(shù)的研究在于改善液壓系統(tǒng)的可控性和靈活性。
92、對于離合器驅(qū)動而言,為了獲得更好的可控性,變分壓螺線管(VBS)電磁閥現(xiàn)在普遍取代了脈沖寬度調(diào)制(PWM)閥。然而,VBS的閥門會因為溫度變化出現(xiàn)滯后和變化的問題。系統(tǒng)辨識理論[26]用于對比例控制電磁閥進行分析建模。報告的結(jié)論是該閥的帶寬受到螺線管電磁部分帶寬的限制。為了進一步提高系統(tǒng)性能,快速、精確的氣門驅(qū)動裝置是必不可少的。一種關(guān)于開關(guān)閥/執(zhí)行器旋轉(zhuǎn)的新概念建議處理在不到5毫秒的響應(yīng)時間里大于10行/毫米的流量。這種概念的主要特點
93、是這種閥有一個單級結(jié)構(gòu),卻有兩級功能??蛇x</p><p><b> 3.結(jié)論</b></p><p> 為了實現(xiàn)最大的燃油經(jīng)濟性并提高優(yōu)越的性能,在控制軟件/算法和硬件方面的研究和開發(fā)對于自動變速器來說都是必不可少的。隨著增強的功能和軟件、硬件日益增加的復(fù)雜性,系統(tǒng)整合是變速器成功發(fā)展的關(guān)鍵。</p><p><b> 參考文
94、獻</b></p><p> [1] Wagner, G., “Application of Transmission Systems for Different Driveline Configurations in Passenger Cars”, SAE Technical Paper 2001-01-0882.</p><p> [2] Hebbale, K.V.
95、and Kao, C.-K., "Adaptive Controlof Shifts in Automatic Transmissions," Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, 1995.</p><p>
96、[3] Kao, C. K., Smith, A. L. and Usoro, P. B., “Fuel Economy and Performance Potential of a Five-Speed 4T60-E Starting Clutch Automatic Transmission Vehicle”, SAE Technical Paper 2003-01-0246.</p><p> [4] K
97、luger, M. and Fussner, D., “An Overview of Current CVT Mechanisms, Forces and Efficiencies”, SAE Technical Paper 970688.</p><p> [5] Raghavan, M. and Raghavan, S., "Kinematic and dynamic analysis of th
98、e half-toroidal traction drive variator," Proceedings of the 2002 Global Powertrain Congress, Detroit, MI, September 24-27, 2002.</p><p> [6] Tanaka, H. and Eguchi, M., “ Stability of a Speed Ratio Con
99、trol Servo-Mechanism for a Half-Toroidal Traction Drive CVT,” JSME International Journal, Series C, Vol. 36, No. 1, 1993.</p><p> [7] Hebbale, K.V., and Carpenter, M.E., "Control of the Geared Neutral
100、Point in a Traction Drive CVT," Proceedings of the 2003 American Control Conference, Denver, CO, 2003.</p><p> [8] Tsai, L. W., Schultz, G., "A Motor-Integrated Parallel Hybrid Transmission,"
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--汽車變速器控制面臨的機遇和挑戰(zhàn).doc
- 外文翻譯--汽車變速器控制面臨的機遇和挑戰(zhàn).doc
- 外文翻譯--汽車變速器
- 外文翻譯--汽車變速器 (2)
- 外文翻譯--汽車變速器.doc
- 外文翻譯---汽車變速器設(shè)計
- 外文翻譯--汽車變速器設(shè)計
- 外文翻譯--汽車變速器.doc
- 社區(qū)銀行所面臨的機遇與挑戰(zhàn)【外文翻譯】
- 外文翻譯-------社區(qū)銀行所面臨的機遇與挑戰(zhàn)
- 汽車與變速器外文翻譯.doc
- 汽車與變速器外文翻譯.doc
- 汽車專業(yè)外文翻譯----當(dāng)今汽車面臨的挑戰(zhàn)
- 外文翻譯--自動手動變速器的變速控制
- 外文翻譯--變速器
- 外文翻譯--變速器介紹
- 外文翻譯--變速器概述
- 外文翻譯--變速器.doc
- 外文翻譯--變速器.doc
- 外文翻譯=汽車與變速箱=3200字符汽車與變速器外文翻譯.doc
評論
0/150
提交評論