2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  中文1740字</b></p><p>  畢業(yè)設(shè)計外文資料翻譯</p><p>  題 目 分形維數(shù)與瀝青混凝土力學(xué)性能之間的關(guān)系</p><p>  學(xué) 院 土木建筑 </p><p>  專 業(yè) 土木工程 </p><

2、;p>  班 級 土木0803 </p><p>  學(xué) 生 </p><p>  學(xué) 號 </p><p>  指導(dǎo)教師 </p><p>  二 〇 一 二 年 三 月 六

3、日</p><p>  The Relationship between the Fractal Dimension and Mechanical</p><p>  Properties of Asphalt Concrete</p><p>  Seracettin Arasan 1 , Engin Yener 2 , Fatih Hattatoglu 3 ,

4、Suat Akbulut 4 , Sinan Hinislioglu 5</p><p>  1, 3, 4, 5-Ataturk University, Engineering Faculty, Department of Civil Engineering ,25240 Erzurum, Turkey</p><p>  2-Bayburt University, Department

5、 of Civil Engineering, Bayburt, Turkey</p><p>  arasan@atauni.edu.tr </p><p><b>  ABSTRACT</b></p><p>  The importance of the shape of aggregate particles on their mech

6、anical behavior is well recognized. In asphalt concrete, the shape of aggregate particles affects the durability, workability, shear resistance, tensile strength, stiffness, fatigue response, and optimum binder content o

7、f the mixture. Due to their irregularity, the shape of aggregates is not accurately described by Euclidian geometry. However, fractal theory uses the concept of</p><p>  fractal dimension, DR, as a way to de

8、scribe the shape of aggregates. This paper describes a study of the influence of fractal dimension on mechanical properties of asphalt concrete.The flow of asphalt concrete decreases and Marshall Stability increases when

9、 the fractal dimension of aggregate increases</p><p>  Keywords: Fractal dimension, asphalt concrete, Marshall Stability, flow, aggregate</p><p>  Introduction</p><p>  The importan

10、ce of the shape of aggregate particles on their mechanical behavior is also well recognized. In asphalt concrete, the shape of aggregate particles affects the durability, workability, shear resistance, tensile strength,

11、stiffness, fatigue response, and optimum binder content of the mixture [1]. The successful quantification of aggregate geometric irregularities is essential for understanding their effects on pavement</p><p>

12、;  performance and for selecting aggregates to produce pavements of adequate quality [2]. Aggregate morphological characteristics are very complex and cannot be characterized adequately by any single test. As a result, c

13、onflicting results have been reported on how aggregate shape influences the quality of HMA mixtures [3-9]. </p><p>  Due to their irregularity, the shape of aggregates is not accurately described by Euclidia

14、n geometry. Fractals are relatively new mathematical concept for describing the geometry of irregularly shaped objects in terms of frictional numbers rather than integer. The concept of fractals introduced by Mandelbrot

15、[10], which has the shape formed in nature, has been usually analyzed using Euclidian geometry. The key parameter for fractal analysis is the fractal dimension, which is a real noninteger nu</p><p>  more fa

16、miliar Euclidean or topological dimension. The fractal dimension for a line of any shape varies between one and two, and for a surface between two and three. Fractaltheory uses the concept of fractal dimension, DR, as a

17、way to describe the shape of aggregates.</p><p>  In recent years, fractal geometry techniques have found widespread applications in many disciplines, including medicine, biology, geography, meteorology, man

18、ufacturing, and material science. Relatively, there have been a few applications of fractal geometry in civil engineering. Some studies have been devoted to developing procedures to determine the particle fractal dimensi

19、ons [11-17]. Others have focused on the effect of fractal dimension of aggregate on engineering properties of soils [18, 19</p><p>  [20, 21]. However, there is no comprehensive study that investigated the e

20、ffect of aggregate fractal dimension to the Marshall stability, flow, and Marshall Quotient (MQ). Consequently, the present study was undertaken to verify whether there is a relationship between the fractal dimension (DR

21、) and the mechanical properties of asphalt concrete.</p><p>  Materials and Methods</p><p>  The bitumen used was AC-20 bitumen. Crushed Basalt was used as the aggregate</p><p>  ma

22、terial. A typical heavy traffic gradation for hot mix asphalts (HMA), designated as Type I in the Turkish State Highway Specifications, and was selected. The Marshall stability and flow tests were carried out following t

23、he procedure of the Test Method for Resistance of Plastic Flow of Bituminous Mixtures Using Marshall Apparatus in ASTM D1559. The imaging system used by the authors consists of a Nikon D80 Camera and Micro 60 mm objectiv

24、e manufactured by Nikon. ImageJ was used as the image anal</p><p>  Correlation between fractal dimension and mechanical properties</p><p>  The correlation between fractal dimension of aggregat

25、e and flow, Marshall Stability, and MQ of asphalt concrete are presented in Figure1, 2, and 3, respectively. It could be seen that the flow decreased as the fractal dimension increased (Figure1). On the other hand, since

26、 fractal dimension has a minimum value of 1 for a circle and larger values longer or thinner shapes, or aggregate having rough edges, it can be concluded that approximation of the shape of aggregates to sphere or smooth

27、aggrega</p><p>  Figure1: The correlation between fractal dimension and flow</p><p>  Figure 2: The correlation between fractal dimension and Marshall Stability</p><p>  Figure 3: T

28、he correlation between fractal dimension and MQ</p><p>  A linear relationship is found between the fractal dimension and Marshall Stability. Similarly, Figure3 shows that Marshall Quotient increases with in

29、creasing fractal dimension. It is an expected result since higher fractal dimension values represent higher aggregate surface irregularities [14-16],and it is well known that increasing aggregate irregularities increases

30、 stability. Similarly, Ishai and Gellber [23] related that HMA stability to geometric irregularities in aggregate particles using </p><p>  concept developed by Tons and Goetz [24]. They found a significant

31、increase in asphalt mix stability with increasing geometric irregularities of the aggregate particles [23].</p><p>  Conclusions</p><p>  The present study was undertaken to investigate the effe

32、ct of fractal dimension on mechanical properties of asphalt concrete. The test results indicated that there is a strong correlation between fractal dimension of coarse aggregates and mechanical properties of asphalt conc

33、rete. Hence, it may be said that the fractal dimension of aggregates is used for determination of mechanical properties of asphalt concrete.</p><p>  References</p><p>  1. Kuo CY, Frost JD, Lai

34、 JS, Wang LB. ThreeDimensional Image Analysis ofAggregate Particles from Orthogonal Projections. Transportation ResearchRecord 1526, National Research Council Washington DC 1996? pp. 98-103.</p><p>  2. Topa

35、l T, Sengoz B. Determination of fine aggregate angularity in relation with the resistance to rutting of hotmix asphalt. Construction and Building Materials , 2005?19:155–163</p><p>  3. Shklarsky E, Livneh M

36、. The Use of Gravels for Bituminous Mixtures. In:Proceedings of The Association of Asphalt Paving Technologists 1964? Vol. 33, pp. 23–65.</p><p>  4. Li MC, Kett I. Influence of Coarse Aggregate Shape on the

37、 Strength of AsphaltConcrete Mixtures. Highway Research Record 1967? 178: pp. 93–106.</p><p>  5. Stephens JE, Sinha KC. Influence of Aggregate Shape on Bituminous MixCharacter. Journal of The Association of

38、 Asphalt Paving Technologists 1978? Vol.47, pp. 434–456.</p><p>  6. Kalcheff IV, Tunnicliff DG. Effects of Crushed Stone Aggregate Size and Shapeon Properties of Asphalt Concrete. In: Proceedings of Associa

39、tion of Asphalt Paving Technologists 1982? Vol. 51: pp. 453–483.</p><p>  7. Huber GA, Heiman GH. Effect of Asphalt Concrete Parameters on RuttingPerformance: a Field Investigation. In: Proceedings of The As

40、sociation of AsphaltPaving Technologists 1987? Vol. 56:33–61.</p><p>  8. Krutz NC, Sebaaly PE. Effect of Aggregate Gradation on Permanent Deformation of Asphaltic Concrete. In: Proceedings of The Associatio

41、n of Asphalt Paving Technologists 1993? Vol. 62, pp. 450–473.</p><p>  9. Oduroh PK, Mahboub KC, Anderson RM. Flat and Elongated Aggregates inSuperpave Regime. Journal of Materials in Civil Engineering 2000?

42、 Vol. 12, pp.124–130.</p><p>  10. Mandelbort, B.B., (1977). Fractals form, change and dimension. Freeman, SanFrancisco, p. 273.</p><p>  11. Kaye, B.H., (1978). Specification of the ruggedness

43、and/or texture of a fine particle profile by its fractal dimension. Powder Technology, 21, 116.</p><p>  12. Kennedy, S.K., Lin, W.H.,(1992). A comparison of Fourier and fractaltechniques in the analysis of

44、closed forms. J. Sedimentary Petrology 62 (5), 842-848.</p><p>  13. Hoyez, B., (1994). The roughness of sand grains: an application of Fourieranalysis and of fractal dimension. Ann. Soc. Géol. du Nord,

45、 v.3, 2ème série, p.73–83. (In French).</p><p>  14. Vallejo, L.E., (1995). Fractal analysis of granular materials. Geotechnique, 45,159-163.</p><p>  15. Vallejo, L.E., Zhou, Y., (199

46、5). The relationship between the fractal dimensionand Krumbein's roundness number. Soils and Foundations, 35 (1), 163-167.</p><p>  16. Hyslip, J.P., Vallejo, L.E., (1997). Fractal analysis of roughness

47、and size distribution of granular materials. Engineering Geology, 48: 231-244.</p><p>  17. Akbulut, S., (2002). Fractal Dimensioning of sand grains using image analysis system. Pamukkale University Journal

48、of Engineering Science, 8(3): 329-334.</p><p>  18. Gori, U., Mari, M., (2001). The correlation between the fractal dimension and internal friction angle of different granular materials, Soils and Foundation

49、s, Vol.41(3)41723.</p><p>  19. Xu, Y. F., Sun, D. A., (2005). Correlation of surface fractal dimension with frictional angle at critical state of sands, Geotechnique, 55 (9), 691-695.</p><p>  

50、20. Peng, Y., Sun, L., Wang, Y., Huang, Z., 2007. Fractal characteristicsof gradedaggregate in asphalt Mixture. Huazhong Keji Daxue Xuebao (Ziran Kexue</p><p>  Ban)/Journal of Huazhong University of Science

51、 and Technology (NaturalScience Edition), 35 (12): 80-82.</p><p>  21. Yang, R., Xu, Zhihong, (2007). Relationship between fractal dimension and road performance of densegradation asphalt mixture. Tumu Gongc

52、heng Xuebao/China Civil Engineering Journal, 40 (3): 98-103.</p><p>  22. Arasan, S., Yener, E., Hattatoglu, F., Hinislioglu, S., Akbulut, S., 2010. The Correlation between Shape of Aggregate and Mechanical

53、Properties of Asphalt Concrete: Digital Image Processing Approach (under review).</p><p>  23. Ishai I, Gellber H. Effect of geometric irregularity of aggregates on the properties and behavior of asphalt con

54、crete. In: Proceedings Association of Asphalt Paving Technologists 1982? 51: 494-521.</p><p>  24. Tons E, Goetz WH. Packing volume concepts for aggregates. Highway Research</p><p>  Record 236,

55、 Transportation Research Board, National Research Council,Washington DC 1968? 79-96.</p><p>  InternationalJournalofCivilAndStructuralEngineering,2010,1(2):165-170.</p><p>  分形維數(shù)與瀝青混凝土力學(xué)性能之間的關(guān)系&

56、lt;/p><p>  Seracettin Arasan 1 , Engin Yener 2 , Fatih Hattatoglu 3 , Suat Akbulut 4 , Sinan Hinislioglu 5</p><p>  1、3、4、5阿塔圖克大學(xué)工程學(xué)院、土木工程部門,25240處軍營,土耳其</p><p>  2 Bayburt大學(xué)土木工程部門,Ba

57、yburt, 土耳其 arasan@atauni.edu.tr</p><p>  摘 要 聚合粒子的形狀對它們力學(xué)行為的重要性已經(jīng)被很好的認(rèn)可了。在瀝青混凝土中,骨料顆粒的形狀影響耐久性,施工性能,剪切強(qiáng)度,抗拉強(qiáng)度,剛度,疲勞反應(yīng)以及混合物的最優(yōu)粘合性。由于他們的違規(guī)操作,骨料形狀并沒有被歐式幾何學(xué)理論準(zhǔn)確地描述。然而,分形理論使用分形維數(shù)的概念,即速度三角形定位法,作為一種描述聚合物形狀的方式。這方面的

58、論文詳細(xì)介紹了關(guān)于分形維數(shù)能夠影響瀝青混凝土的力學(xué)性能的研究。研究證明當(dāng)分形維度增長時會引起瀝青混凝土的流動性減少和馬歇爾穩(wěn)定度增加。</p><p>  關(guān)鍵詞 分形維數(shù),瀝青混凝土,馬歇爾穩(wěn)定度,流動性,骨料</p><p><b>  1 介紹</b></p><p>  聚合粒子的形狀對它們力學(xué)行為的重要性也已經(jīng)被很好的認(rèn)可了。在瀝

59、青凝土中,骨料顆粒的形狀影響耐久性,施工性能,剪切強(qiáng)度,抗拉強(qiáng)度,剛度,疲勞反應(yīng)以及混合物的最優(yōu)粘合性[1]。大量的幾何不規(guī)則顆粒的成功聚合對理解它們對路面性能的影響和選擇骨料顆粒來生產(chǎn)具有充足質(zhì)量的路面都是十分必要的[2]。聚合物的形態(tài)特征非常復(fù)雜,不能由任何一個充分的測試來表征。最終,關(guān)于骨料顆粒的形狀如何影響熱拌瀝青混凝土混合物質(zhì)量的相互矛盾的結(jié)果已經(jīng)被報道了[39]。</p><p>  由于他們的違規(guī)操

60、作,骨料形狀并沒有被歐式幾何學(xué)理論準(zhǔn)確地描述。分形理論是用相對較新的數(shù)學(xué)概念來描述幾何不規(guī)則形狀的物體并對其進(jìn)行摩擦編號而不是整數(shù)編號。分形的概念由曼德勃羅引入[10],它在本質(zhì)上有形狀成形,通常用歐式幾何來分析。分形維數(shù)是對分形現(xiàn)象進(jìn)行分析的關(guān)鍵參數(shù),是不同于更熟悉的歐幾里德的幾何學(xué)維數(shù)或拓?fù)渚S數(shù)的一種真正的具有不完整性號碼。分形維數(shù)作為具有所有形狀的一行線在一維與二維之間變化,在表面上在二維與三維之間變化。分形理論使用分形維數(shù)的概念

61、,即速度三角形定位法,作為一種描述聚合物形狀的方式。</p><p>  近年來,分形幾何技術(shù)被廣泛應(yīng)用在許多學(xué)科,包括醫(yī)學(xué)、生物學(xué)、地理、氣象、制造材料科學(xué)。相對而言,已經(jīng)有一些分形幾何的理論應(yīng)用于土建工程方面。一些研究已經(jīng)致力于通過發(fā)展程序來確定顆粒分形維數(shù)[1117]。別的研究都聚焦在具有分形維數(shù)的骨料顆粒對土壤的工程性質(zhì)[18、19]和瀝青混凝土的影響上[20, 21]。然而,并沒有全面綜合的研究來調(diào)查分

62、形維數(shù)對馬歇爾穩(wěn)定度、流動性、馬歇爾智商(MQ)的影響。因此,本研究著手于進(jìn)行驗證在分形維數(shù)(DR)與瀝青混凝土的力學(xué)性能之間是否有關(guān)系。</p><p><b>  2 材料和方法</b></p><p>  瀝青使用的是AC20的瀝青。壓碎的玄武巖作為聚合物的骨料顆粒材料。選取了一個經(jīng)常交通擁擠的被土耳其國道技術(shù)規(guī)范指定為i型的熱拌瀝青的路面層次。執(zhí)行馬歇爾穩(wěn)定

63、性和流動性測試程序的測試方法是使用美國ASTM D1559標(biāo)準(zhǔn)下的測試瀝青混合物的電阻塑流動性的馬歇爾儀器進(jìn)行測試。作者所采用的成像系統(tǒng)由一個D80尼康照相機(jī)和有60微米物鏡鏡頭的尼康相機(jī)組成。ImageJ作為圖像分析程序。所用的材料的其它性能的測試程序,成像系統(tǒng),圖像處理步驟及其它的也詳細(xì)的在Arasan中記錄了[22]。此外,聚合物骨料顆粒的分形維數(shù)也使用areaperimeter方法計算出來了</p><p&g

64、t;  3 分形維數(shù)與力學(xué)性能之間的關(guān)聯(lián)</p><p>  骨料顆粒的分形維數(shù)分別和流動性,馬歇爾穩(wěn)定度,及馬歇爾系數(shù)瀝青混凝土的關(guān)聯(lián)體現(xiàn)在下面三個表格Figure1、2和3上。在表格1中我們可以看到隨著分形維數(shù)的增加流動性會逐漸減少。另一方面,由于分形維數(shù)的最小值呈現(xiàn)出一個圓圈的形狀,大的數(shù)值呈現(xiàn)出長而細(xì)的較薄的形狀,或者總有粗糙的邊緣,結(jié)果表明骨料顆粒的形狀近似球形,或光滑的骨料球體表面導(dǎo)致更大的流動性數(shù)值

65、。</p><p>  表格1:分形維數(shù)與流動性之間的關(guān)系</p><p>  表格2:分形維數(shù)與馬歇爾穩(wěn)定度之間的關(guān)系</p><p>  表格3:分形維數(shù)與馬歇爾系數(shù)之間的關(guān)系</p><p>  一個存在于分形維數(shù)與馬歇爾穩(wěn)定度之間的線性關(guān)系被發(fā)現(xiàn)了。同樣,圖3顯示分形維數(shù)隨著馬歇爾系數(shù)的增加而增加。它是一個預(yù)期的結(jié)果,因為更高的分形維

66、數(shù)值代表更高骨料顆粒表面的不規(guī)則性[1416],眾所周知,增加骨料顆粒的不規(guī)則性能夠增加穩(wěn)定度。同樣的,Ishai[23]和Gellber認(rèn)為熱拌瀝青混合物的穩(wěn)定度與使用由Tons and Goetz [24]開發(fā)出的概念的聚合物骨料顆粒的幾何不規(guī)則性相關(guān)聯(lián)。他們發(fā)現(xiàn)增加瀝青混合物的穩(wěn)定度能夠顯著提高混合物顆粒的幾何不規(guī)則性[23]。</p><p><b>  4 結(jié)論</b></p

67、><p>  本課題旨在研究分形維數(shù)對瀝青混凝土的力學(xué)性能的影響。試驗結(jié)果表明,聚合物的粗糙骨料顆粒的分形維數(shù)與瀝青混凝土的力學(xué)性能之間有較強(qiáng)的聯(lián)系。因此,可以這樣說,聚合物骨料顆粒的分形維數(shù)是用于檢測瀝青混凝土的力學(xué)特性的。</p><p><b>  參考書目</b></p><p>  1。郭CY,JD、萊卡JS王建民。三維圖像分析的骨料顆粒

68、從正交的預(yù)測。運(yùn)輸研究</p><p>  創(chuàng)記錄的1526,國家研究委員會1996年華盛頓特區(qū)?98103頁。</p><p>  2。Topal T、b Sengoz測定細(xì)骨料angularity在跟他的關(guān)系hotmix抗車轍的瀝青。建設(shè)和建筑材料,2005?19:155 - 163</p><p>  3。Shklarsky E,Livneh m .的使用對瀝

69、青碎石。 在:訴訟協(xié)會的瀝青攤鋪技術(shù)人員1964?第23 -33 頁。</p><p>  4。李MC,我的Kett影響粗骨料形狀對瀝青的力量混凝土的混合物。公路研究記錄1967?178:93 - 106頁。</p><p>  5。史蒂芬杰,KC。影響微創(chuàng)瀝青混合料形狀性格。協(xié)會的雜志瀝青攤鋪技術(shù)人員1978?卷。47),頁434 - 456。</p><p> 

70、 6。Kalcheff IV,Tunnicliff DG實驗。 影響碎石骨料的大小和形狀瀝青混凝土的性能。土木工程協(xié)會的瀝青技術(shù)人員1982?鋪平了道路。51期:第483 - 453頁。</p><p>  7。湖北遺傳算法,Heiman生長激素。影響參數(shù)對瀝青混凝土路面車轍性能:一個實地考察。土木工程協(xié)會的瀝青技術(shù)人員1987?鋪平了道路。56:33卷:61 -。</p><p>  8

71、。Krutz數(shù)控,Sebaaly體育課。 在礦料級配的影響永久變形瀝青混凝土的。土木工程協(xié)會的瀝青攤鋪技術(shù)人員1993?卷,第二期,頁450 - 473。</p><p>  9。Oduroh PK,Mahboub KC,安德森RM。 平,伸長的蘊(yùn)Superpave政權(quán)。 材料在土木工程學(xué)報》。2000?12期,頁124 - 130。</p><p>  10。 Mandelbort,桿玩

72、具 (1977)。 分形的形式,改變和尺寸。弗里曼、圣舊金山,p。273。</p><p>  11分。凱、林丙輝(1978)。 規(guī)格的強(qiáng)度和/或紋理的罰款顆粒調(diào)剖分形維數(shù)的。粉技術(shù),21日。</p><p>  12。 肯尼迪、S.K.、林、w·h·,(1992)。 比較傅里葉和分形的技術(shù)分析的封閉形式。沉積巖石學(xué)與62(5),842848 -。</p>

73、<p>  13歲。Hoyez >(1994)。 砂顆粒粗糙化的機(jī)體所應(yīng)用的傅里葉分析和分形維數(shù)。安。系統(tǒng)芯片(Soc)。29。 嘟了v.3 2聯(lián)賽電磁輻射,p。73 - 83。 (法國)。</p><p>  14。 Vallejo,L.E. (1995)。 顆粒分形分析的材料。Geotechnique,45,159163。</p><p>  15。 Vallejo,

74、L.E. 、周、李炳,(1995)。分形維數(shù)之間的關(guān)系和Krumbein的圓度號碼。 土壤和基礎(chǔ),35(1):163167。</p><p>  16歲。Hyslip論文 ,Vallejo,L.E. (1997)。 分形分析的表面粗糙度和尺寸顆粒狀物料的分布。工程地質(zhì)、48:231244 。</p><p>  17歲。Akbulut宋文沛,(2002)。 砂顆粒尺寸的分形圖像分析系統(tǒng)。棉

75、花堡大學(xué)的工程科學(xué)學(xué)報,8(3):329334。</p><p>  18。Gori,美國,馬里期,(2001)。分形維數(shù)之間的關(guān)系內(nèi)摩擦角不同的顆粒狀物料、土壤和基礎(chǔ)、卷。41(3)41723。</p><p>  19歲。徐來,y . f .,太陽,d . a .,(2005)。相關(guān)的表面分形維數(shù)摩擦角的臨界的沙灘,Geotechnique,33(9),691695。</p>

76、;<p>  20。 彭、李炳、太陽、l,小民忞,黃,z .,2007年。分級分形特征在瀝青混合料。華中科技大學(xué)學(xué)報"," - Kexue(Ziran克己斑)的華中科技大學(xué)學(xué)報(自然科學(xué)和技術(shù)</p><p>  科學(xué)版),35(12):808</p><p>  21。 楊》,徐來,Zhihong,(2007)。 分形維數(shù)與道路之間的關(guān)系densegra

77、dation性能</p><p>  瀝青混合料性能的影響。Tumu學(xué)報(中國季刊"土木工程學(xué)報,40(3):98103。</p><p>  22。 Arasan宋文沛,Yener)、大腸、Hattatoglu林廷駿,Hinislioglu宋文沛,Akbulut,王水,2010。 這相關(guān)性的總體形狀及性能的瀝青具體的數(shù)字圖像處理方法(在瀏覽)。</p><p

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論