外文資料翻譯--太陽能光伏發(fā)電_第1頁
已閱讀1頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、<p><b>  中文2450字</b></p><p>  畢業(yè)設計(論文)外文資料翻譯</p><p>  注:請將該封面與附件裝訂成冊。</p><p> 學 院:物電學院</p><p> 專 業(yè):電氣工程及其自動化</p><p> 姓 名:</p&g

2、t;<p> 學 號:</p><p> 外文出處:IEEE CONFERENCE PUBLICATIONS</p><p> 附 件:1、外文資料翻譯譯文;2、外文原文。</p><p>  附件1:外文資料翻譯譯文</p><p><b>  太陽能光伏發(fā)電</b></p>&

3、lt;p><b>  摘 要</b></p><p>  這份報告是對光伏發(fā)電技術的概述。該報告的目的是為讀者提供對光伏發(fā)電和光伏發(fā)電技術如何在實際中應用的一般性理解。</p><p>  有一個簡短的早期研究和討論關于光伏電池如何將太陽光轉(zhuǎn)換為電能的描述。該報告涵蓋了集電環(huán),平板集熱器,薄膜技術,建筑一體化系統(tǒng)。對光伏電池類型的討論包括單晶,多晶和薄膜材料。同

4、時該報告涵蓋提高電池效率,降低制造成本,并尋找光伏技術的經(jīng)濟應用方法。隨著市場趨勢和預測的討論,包括了各大光伏廠商和組織。</p><p>  結(jié)論是,光伏發(fā)電仍然比一般傳統(tǒng)系統(tǒng)成本高昂。然而,在常規(guī)電力成本中的大變化,還有其他因素,如分銷成本,使用光伏發(fā)電在經(jīng)濟領域的創(chuàng)建。光伏發(fā)電可用于遠程應用,例如通信,家庭和發(fā)展中國家的村莊,抽水,露營,劃船等,電力公司發(fā)電設施和住宅屋頂安裝的電網(wǎng)連接的應用程序構(gòu)成了光伏使

5、用較小但更迅速擴大的部分。此外,由于技術進步和成本差距縮小,更多的應用以更快的速度正在變得經(jīng)濟可行。</p><p><b>  引 言</b></p><p>  這份報告是蓋勒·格林利夫在1998年10月19號請求建議的結(jié)果。比爾·盧克和湯姆·佩尼克于1998年10月30日年回應她的建議,繼續(xù)完成早前光伏發(fā)電研究的要求。該建議獲得通過

6、,并于一九九八年十一月三十日介紹,這是對光伏發(fā)電的最終報告之后繼續(xù)進行研究的結(jié)果。</p><p><b>  光伏發(fā)電技術</b></p><p>  科學家們已知的光伏效應超過150年。光伏發(fā)電并沒有考慮到的現(xiàn)實,直到太空計劃的到來。早期衛(wèi)星所需要的電力來源,任何解決方案都是昂貴的。為了這一目標,太陽能電池的發(fā)展最終導致其在其他應用方面的應用。</p>

7、<p>  光伏發(fā)電的發(fā)現(xiàn)與開發(fā)</p><p>  光伏效應自1939年已經(jīng)被了解,但直到20世紀50年代,美國研究人員在開發(fā)航天器產(chǎn)生的電力的途徑上,電池的效率保持在約1%,基本上獲得的是一張空白支票。貝爾實驗室很快達到11%的效率,并在1958年,先鋒衛(wèi)星采用的第一個實用的太陽能光伏發(fā)電產(chǎn)生了適度的1瓦特。</p><p>  在20世紀60年代,空間計劃繼續(xù)要求改善光

8、伏發(fā)電技術。科學家需要得到來自太陽能集熱器盡可能多的電力,而成本是次要的。如果沒有這種巨大的發(fā)展努力,光伏發(fā)電在今天將沒有多大用處。</p><p><b>  輸出功率和額定效率</b></p><p>  對功率輸出和光伏電池,組件效率給出的數(shù)字,系統(tǒng)可能會產(chǎn)生誤導。重要的是要理解這些數(shù)字意味著什么,以及它們?nèi)绾紊婕暗綑嗔碜园惭b光伏發(fā)電系統(tǒng)提供。</p&g

9、t;<p><b>  額定功率</b></p><p>  光伏發(fā)電系統(tǒng)的電壓被定為峰值千瓦(kWp)。這是一個新的,干凈的系統(tǒng),預計在一個晴朗的日子陽光直射傳送的電力量。我們可以安全地假設,實際產(chǎn)量將從未完全達到此值。系統(tǒng)輸出將受到損害的太陽,大氣條件,在收藏家的塵土,組件的惡化角度。在比較傳統(tǒng)的光伏系統(tǒng),發(fā)電系統(tǒng),每個人都應該牢記,光伏系統(tǒng)只在白天工作效率。因此,一個10

10、0千瓦的太陽能光伏系統(tǒng)只能產(chǎn)生常規(guī)的100千瓦發(fā)電機日產(chǎn)量的一小部分。</p><p><b>  額定效率</b></p><p>  一個光伏系統(tǒng)的效率是太陽光轉(zhuǎn)換為電能的能量百分比。最常見的效率數(shù)據(jù),是利用小型電池化驗結(jié)果。小型電池具有較低的內(nèi)阻和會比在實際應用中使用的大型電池更高的效率。此外,光伏組件是由串聯(lián)連接到一個可用的電壓提供大量的電池。由于每個電池內(nèi)部

11、的阻力,總電阻增大,效率下降約70%。在較低溫度下效率是較高的。在實驗室用于測量溫度可能比實際安裝的環(huán)境低。</p><p><b>  轉(zhuǎn)換陽光為電力</b></p><p>  一個典型的太陽能電池由半導體材料(通常是硅)有一個PN結(jié),如圖1所示。陽光打在細胞提高了電子的能量水平,并釋放他們從他們的原子炮彈。在PN結(jié)電場驅(qū)動到N區(qū),而正電荷的電子被驅(qū)趕到P區(qū)域。一

12、對細胞表面的金屬網(wǎng)格,而收集的電子金屬背板收集正電。</p><p>  圖1 太陽能電池如何工作</p><p><b>  薄膜技術</b></p><p>  薄膜太陽能電池的制造采用的半導體材料薄層以堅實的支撐材料。一個典型的薄膜電池組成如圖2所示。陽光進入本質(zhì)層產(chǎn)生自由電子。 P型和N型層創(chuàng)建一個跨層內(nèi)電場。電場驅(qū)動到n型層的正電荷,

13、而在P型層收集自由電子。該P型,內(nèi)在的,和N型層,總厚度約一微米。雖然效率不高于單,多晶硅,薄膜太陽能電池為大規(guī)模生產(chǎn)發(fā)電提供更大允諾,因為容易大批量生產(chǎn)而且材料成本較低。薄膜也是建筑一體化系統(tǒng)的需求,因為半導體薄膜可應用于如玻璃,屋頂和墻板等建筑材料。</p><p>  圖2 典型的薄膜非晶硅結(jié)構(gòu)</p><p>  使用薄膜代替硅晶片,大大降低了為每個電池需要的半導體材料的數(shù)量,因此

14、降低了生產(chǎn)光伏電池的成本。砷化鎵(GaAs),銅銦硒(CuInSe2),碲化鎘(CdTe)和二氧化鈦(TiO2)是已為薄膜太陽能電池使用的材料。二氧化鈦薄膜最近已開發(fā)并有趣,因為材料是透明的,可用于窗戶使用。</p><p><b>  錫氧化物</b></p><p>  錫氧化物是一種透明導電材料,當薄薄的一層。錫氧化物是用在地方的金屬網(wǎng)格,薄膜光伏板頂層。<

15、;/p><p><b>  非晶硅(a-Si)</b></p><p>  非晶(uncrystallized)硅是最常用的薄膜技術。很容易出現(xiàn)退化和生產(chǎn)效率5-7%的細胞。雙和三結(jié)設計效率提高8-10%。額外的層捕捉不同波長的光。頂部細胞捕捉藍燈,中間細胞捕捉綠燈,底部細胞捕捉紅光。變化包括非晶碳化硅(a-SiC),無定形硅鍺(a-SiGe)技術,微晶硅(?c-Si)及

16、無定形硅氮化物(a-SiN)。</p><p>  碲化鎘(CdTe)和鎘的硫化物(CdS)</p><p>  光伏電池使用這些材料現(xiàn)由BP太陽能和太陽能電池公司的發(fā)展。</p><p><b>  多晶硅</b></p><p>  多晶硅非晶硅提供了一個提高效率,同時仍然只用少量的材料。</p>&l

17、t;p><b>  銅銦硒和銅銦鎵硒</b></p><p>  這些材料目前正在調(diào)查,并沒有被用于光伏發(fā)電商業(yè)化。</p><p><b>  集中收集</b></p><p>  通過使用透鏡或反射鏡集中在一個小面積的太陽光線,它可以減少所需的光伏材料的數(shù)量。第二個優(yōu)勢是,可以提高電池的效率在高光濃度達到。為了適

18、應較高的光電池電流,較大的金屬網(wǎng)格是使用。例如,在一個有22倍的濃度比體系,電網(wǎng)覆蓋了約20%的太陽能電池表面。為了防止堵塞20%的陽光,用一個棱鏡來重定向陽光照到光伏材料,如圖3所示。第二個問題是一個集中系統(tǒng)內(nèi)較高的溫度。這些電池可以用散熱片冷卻或熱量可以用來加熱水。</p><p>  圖3 棱鏡大電流的太陽能電池</p><p>  只有不被云層或霾分散,直射的陽光才可以被集中。因此

19、,集中收集器在經(jīng)常陰天或朦朧的地區(qū)效果不好,如沿海地區(qū)。</p><p><b>  結(jié) 論</b></p><p>  光伏效率和制造成本還沒有達到可以取代傳統(tǒng)的煤,天然氣和核能為動力的發(fā)電設施的程度。對于峰值負載的使用(無電池存儲),光伏發(fā)電的成本大約是兩到四個像常規(guī)電源倍。(在光伏發(fā)電和常規(guī)發(fā)電成本間比較是困難的,由于在市電的成本,陽光的輻射強度,存在很大差異,

20、還有很多其他變數(shù)。)</p><p><b>  參考文獻</b></p><p>  [1] “The History of PV,” http://www.pvpower.com/pvhistory.html, November 15, 1998.</p><p>  [2] Mark Hammonds, “Getting Power fr

21、om the Sun, Solar Power,” Chemistry and Industry, no. 6, p. 219, March 16, 1998.</p><p>  [3] "Energy Conversion: Development of solar cells" Britannica Online.</p><p>  http://www.eb.

22、com:180/cgi-bin/g?DocF=macro/5002/13/245.html, October 21, 1998.</p><p>  [4] Kenneth Zweibel and Paul Hersch, Basic Photovoltaic Principles and Methods, New York: Van Nosstrand Reinhold Company, Inc., 1984.

23、</p><p>  [5] “Volume 3: The World PV Market to 2010,” Photovoltaics in 2010, Luxembourge: Office for Official Publications of the European Communities, 1996.</p><p>  [6] “Taking Off of New Pho

24、tovoltaic Energy Revolution,” Japan 21st, May 1996.</p><p><b>  附件2:外文原文</b></p><p>  PHOTOVOLTAIC POWER GENERATION</p><p><b>  ABSTRACT</b></p><p

25、>  This report is an overview of photovoltaic power generation. The purpose of the report is to provide the reader with a general understanding of photovoltaic power generation and how PV technology can be practically

26、 applied.</p><p>  There is a brief discussion of early research and a description of how photovoltaic cells convert sunlight to electricity. The report covers concentrating collectors, flat-plate collectors

27、, thin-film technology, and building-integrated systems. The discussion of photovoltaic cell types includes single-crystal, poly-crystalline, and thin-film materials. The report covers progress in improving cell efficien

28、cies, reducing manufacturing cost, and finding economic applications of photovoltaic technol</p><p>  The conclusion is that photovoltaic power generation is still more costly than conventional systems in ge

29、neral. However, large variations in cost of conventional electrical power, and other factors, such as cost of distribution, create situations in which the use of PV power is economically sound. PV power is used in remote

30、 applications such as communications, homes and villages in developing countries, water pumping, camping, and boating. Grid-connected applications such as electric utility gen</p><p>  INTRODUCTION</p>

31、<p>  This report is the result of Gale Greenleaf’s October 19, 1998 request for proposal. Bill Louk and Tom Penick responded to her request with a proposal, dated October 30, 1998, to continue earlier research on

32、 photovoltaic power generation. The proposal was approved and resulted in continued research followed by a presentation on November 30, 1998 and this final report on photovoltaic power generation.</p><p>  P

33、HOTOVOLTAIC TECHNOLOGY</p><p>  Scientists have known of the photovoltaic effect for more than 150 years. Photovoltaic power generation was not considered practical until the arrival of the space program. Ea

34、rly satellites needed a source of electrical power and any solution was expensive. The development of solar cells for this purpose led to their eventual use in other applications.</p><p>  DISCOVERY AND DEVE

35、LOPMENT OF PHOTOVOLTAIC POWER</p><p>  The photovoltaic effect has been known since 1839, but cell efficiencies remained around 1% until the 1950s when U. S. researchers were essentially given a blank check

36、to develop a means of generating electricity onboard space vehicles. Bell Laboratories quickly achieved 11% efficiency, and in 1958, the Vanguard satellite employed the first practical photovoltaic generator producing a

37、modest one watt. </p><p>  In the 1960s, the space program continued to demand improved photovoltaic power generation technology. Scientists needed to get as much electrical power as possible from photovolta

38、ic collectors, and cost was of secondary importance . Without this tremendous development effort, photovoltaic power would be of little use today.</p><p>  POWER OUTPUT AND EFFICIENCY RATINGS</p><

39、p>  The figures given for power output and efficiency of photovoltaic cells, modules, and systems can be misleading. It is important to understand what these figures mean and how they relate to the power available fro

40、m installed photovoltaic generating systems.</p><p>  Power Ratings</p><p>  Photovoltaic power generation systems are rated in peak kilowatts (kWp). This is the amount of electrical power that

41、a new, clean system is expected to deliver when the sun is directly overhead on a clear day. We can safely assume that the actual output will never quite reach this value. System output will be compromised by the angle o

42、f the sun, atmospheric conditions, dust on the collectors, and deterioration of the components. When comparing photovoltaic systems to conventional power generatio</p><p>  Efficiency Ratings</p><

43、p>  The efficiency of a photovoltaic system is the percentage of sunlight energy converted to electrical energy. The efficiency figures most often reported are laboratory results using small cells. A small cell has a

44、lower internal resistance and will yield a higher efficiency than the larger cells used in practical applications. Additionally, photovoltaic modules are made up of numerous cells connected in series to deliver a usable

45、voltage. Due to the internal resistance of each cell, the total res</p><p>  CONVERTING SUNLIGHT TO ELECTRICITY</p><p>  A typical photovoltaic cell consists of semiconductor material (usually s

46、ilicon) having a p-n junction as shown in Figure 1. Sunlight striking the cell raises the energy level of electrons and frees them from their atomic shells. The electric field at the p-n junction drives the electrons int

47、o the n region while positive charges are driven to the p region. A metal grid on the surface of the cell collects the electrons while a metal back-plate collects the positive charges.</p><p>  Figure 1.How

48、solar cells work</p><p>  Thin Film Technology</p><p>  Thin-film solar cells are manufactured by applying thin layers of semiconductor materials to a solid backing material. The composition of

49、a typical thin-film cell is shown in Figure 2. Sunlight entering the intrinsic layer generates free electrons. The p-type and n-type layers create an electric field across the intrinsic layer. The electric field drives t

50、he free electrons into the n-type layer while positive charges collect in the p-type layer. The total thickness of the p-type, intrinsic, and </p><p>  Figure 2 Typical thin-film amorphous silicon constructi

51、ons</p><p>  Using thin films instead of silicon wafers greatly reduces the amount of semiconductor material required for each cell and therefore lowers the cost of producing photovoltaic cells. Gallium arse

52、nide (GaAs), copper indium diselenide (CuInSe2), cadmium telluride (CdTe) and titanium dioxide (TiO2) are materials that have been used for thin film PV cells. Titanium dioxide thin films have been recently developed and

53、 are interesting because the material is transparent and can be used for windows.</p><p><b>  Tin Oxide</b></p><p>  Tin oxide is a conductive material that is transparent when in a

54、thin layer. Tin oxide is used in place of a metallic grid for the top layer of thin film photovoltaic sheets.</p><p>  Amorphous Silicon (a-Si) </p><p>  Amorphous (uncrystallized) silicon is th

55、e most popular thin-film technology. It is prone to degradation and produces cell efficiencies of 5-7%. Double- and triple-junction designs raise efficiency to 8-10%. The extra layers capture different wavelengths of lig

56、ht. The top cell captures blue light, the middle cell captures green light, and the bottom cell captures red light. Variations include amorphous silicon carbide (a-SiC), amorphous silicon germanium (a-SiGe), microcrystal

57、line silicon (?c-Si)</p><p>  Cadmium Telluride (CdTe) and Cadmium Sulphide (CdS) </p><p>  Photovoltaic cells using these materials are under development by BP Solar and Solar Cells Inc .</p

58、><p>  Poly-crystalline Silicon </p><p>  Poly-crystalline silicon offers an efficiency improvement over amorphous silicon while still using only a small amount of material.</p><p>  C

59、opper Indium Diselenide and Copper Indium Gallium Diselenide </p><p>  These materials are currently being investigated, and have not been used commercially for photovoltaics.</p><p>  Concentra

60、ting Collectors</p><p>  By using a lens or mirror to concentrate the sun’s rays on a small area, it is possible to reduce the amount of photovoltaic material required. A second advantage is that greater cel

61、l efficiency can be achieved at higher light concentrations. To accommodate the higher currents in the photocells, a larger metallic grid is used. For example, in a system with a 22X concentration ratio, the grid covers

62、about 20% of the surface of the solar cell. To prevent this from blocking 20% of the sunlight, a p</p><p>  Only direct sunlight, not scattered by clouds or haze, can be concentrated. Therefore, the concentr

63、ating collectors are less effective in locations that are frequently cloudy or hazy, such as coastal areas.</p><p>  Figure 3.Prism cover for high-current solar cell</p><p>  CONCLUSION</p>

64、;<p>  Photovoltaic efficiency and manufacturing costs have not reached the point that photovoltaic power generation can replace conventional coal-, gas-, and nuclear-powered generating facilities. For peak load u

65、se (no battery storage), the cost of photovoltaic power is around two to four times as much as conventional power. (Cost comparisons between photovoltaic power and conventionally generated power are difficult due to wide

66、 variations in utility power cost, sunlight availability, and numerous oth</p><p>  REFERENCES</p><p>  [1] “The History of PV,” http://www.pvpower.com/pvhistory.html, November 15, 1998.</p&g

67、t;<p>  [2] Mark Hammonds, “Getting Power from the Sun, Solar Power,” Chemistry and Industry, no. 6, p. 219, March 16, 1998.</p><p>  [3] "Energy Conversion: Development of solar cells" Brit

68、annica Online.</p><p>  http://www.eb.com:180/cgi-bin/g?DocF=macro/5002/13/245.html, October 21, 1998.</p><p>  [4] Kenneth Zweibel and Paul Hersch, Basic Photovoltaic Principles and Methods, Ne

69、w York: Van Nosstrand Reinhold Company, Inc., 1984.</p><p>  [5] “Volume 3: The World PV Market to 2010,” Photovoltaics in 2010, Luxembourge: Office for Official Publications of the European Communities, 199

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論