暖通畢業(yè)設(shè)計外文翻譯---地源熱泵系統(tǒng)的模擬與設(shè)計_第1頁
已閱讀1頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p>  參考文獻 <<地源熱泵系統(tǒng)的模擬與設(shè)計>></p><p>  摘要:總結(jié)了近年來地源熱泵系統(tǒng)的模擬和設(shè)計方面的研究和進展。首先給出了地源熱泵系統(tǒng)各部件建模方面的進展,包括豎直埋管地?zé)釗Q熱器、單井循環(huán)系統(tǒng)以及在地源熱泵混合系統(tǒng)中采用的幾種輔助散熱裝置。其次,討論現(xiàn)場測定深層巖土熱物性的技術(shù)。第三,介紹豎直埋管地?zé)釗Q熱器的設(shè)計方法。最后,給出在設(shè)計地源熱

2、泵系統(tǒng)中采用系統(tǒng)模擬的幾個應(yīng)用實例。</p><p>  關(guān)鍵詞:熱泵;地?zé)釗Q熱器;熱物性;混合系統(tǒng);模型;設(shè)計;模擬</p><p><b>  1.簡介</b></p><p>  從熱力學(xué)的觀點來看,在空調(diào)系統(tǒng)中利用地源熱作為熱源或者冷源是吸引人的。這是因為,從全年來看,其溫度比環(huán)境干球或濕球溫度更接近于室內(nèi)(所需要)的溫度?;谶@個原因

3、,地源熱泵系統(tǒng)較之空氣源熱泵系統(tǒng)在高效率上更具有潛力。在實際情況中,源熱泵系統(tǒng)由于沒有設(shè)備暴露在外部的環(huán)境中,花在維修方面的費用是比較低的(Cane, et al. 1998).</p><p>  雖然已經(jīng)有一些地源熱泵系統(tǒng)技術(shù)在斯堪的那維亞半島得到發(fā)展,但是其商業(yè)上的開發(fā)利用卻是在美國做得最好。這是主要是因為在美國已經(jīng)存在著一個很大的住宅空調(diào)系統(tǒng)市場。其系統(tǒng)由于有著較低的能耗和低運行費用已經(jīng)證明吸引了很多業(yè)主

4、。在美國很多地區(qū)用電峰值取決于空調(diào)用電量。 對于這個原因使得一些電力設(shè)備公司對這個系統(tǒng)很感興趣,他們希望通過使用這樣的系統(tǒng)來減少對電力的需求。一些小型商業(yè)機構(gòu)和公共部門已經(jīng)研究出這種技術(shù)的應(yīng)用。地源熱泵系統(tǒng)由于其較低的運行費用而吸引一些學(xué)校主管,并有越來越多的學(xué)校使用。在美國關(guān)于地源熱泵技術(shù)實際應(yīng)用的一些實例研究細節(jié)已經(jīng)交給GHPC。</p><p>  在論文接下來的部分中我們首先會給出地源熱泵系統(tǒng)各部件建模方

5、面的進展,包括豎直埋管地?zé)釗Q熱器、水源熱泵、單井循環(huán)系統(tǒng)以及在地源熱泵混合系統(tǒng)中采用的幾種輔助散熱裝置。由于要設(shè)計地下?lián)Q熱器首先就要了解地?zé)岬膶傩裕@篇論文的第二部分簡要介紹了確定深層巖土熱物性的模型,這種方法是由對測試孔溫度反應(yīng)的現(xiàn)場測試法引申而來的。在論文的第三部分,將會介紹一下用軟件來設(shè)計豎直埋管地?zé)釗Q熱器的方法。最后,給出在設(shè)計地源熱泵系統(tǒng)中采用系統(tǒng)模擬的幾個應(yīng)用實例,其中包括混合 GSHP 系統(tǒng)和防凍GSHP系統(tǒng)的設(shè)計。<

6、;/p><p>  2.GSHP系統(tǒng)模型構(gòu)成</p><p>  GSHP系統(tǒng)一般由水源熱泵和地下?lián)Q熱器組成,對于混合GSHP系統(tǒng),還包括幾種輔助散熱裝置。這些模擬的設(shè)備在下面被覆蓋。</p><p>  2.1閉循環(huán)地下?lián)Q熱器</p><p>  閉循環(huán)雙管系統(tǒng)可采用水平埋管或垂直埋管。垂直埋管系統(tǒng)由于其較高的換熱效率而被人們較多的采用。這種

7、類型的閉式循環(huán)換熱器由一根根置入直徑為75MM~150MM鉆孔的U型管組成。這些鉆孔在置入U型管后用鉆出來的土回填或者,更普遍,整個孔都用薄泥漿填塞。灌漿通常是避免地下水的污染而且使換熱管道與完全接觸以達大良好的換熱效果。常用于系統(tǒng)埋管的是直徑為22MM~33MM的高密度聚乙烯管 (HDPE)。打孔深度一般在30M~120M之間。</p><p>  兩種模擬的復(fù)雜性很有意思。首先,測量地下?lián)Q熱器在單位時間內(nèi)用戶

8、的最小輸入的設(shè)計方法是可取的。其次,其能預(yù)測數(shù)小時內(nèi)(或較短的時距)由于建筑物負荷的連續(xù)變化對地下?lián)Q熱器造成何影響的模擬模式也是也是可取的。這一理論允許對系統(tǒng)能量消耗和用電需求預(yù)測。因為兩者的方法以被 Eskilson(1987) 發(fā)展的模型為基礎(chǔ)在這論文中呈現(xiàn)了, Eskison 的方法將會首先被討論,接著是對被 Yavuzturk 和 Spitler 發(fā)展的模擬模式的描述.(1999)</p><p>  2

9、.1.1 Eskison 的研究方法</p><p>  Eskison (1987)針對地耦孔周圍溫度分布的確定問題的解決辦法是采用邏輯分析和數(shù)學(xué)解析相結(jié)合的辦法。對于初始條件和邊界條件恒定的均勻土壤中的單個地耦孔的相關(guān)數(shù)值建立徑向-軸向坐標(biāo),使用瞬態(tài)有限差分方程進行二維數(shù)值計算。像管壁和泥漿等個別鉆孔要素的熱容量是被忽略的。單個鉆孔的溫度場通過重疊來獲得整個鉆孔范圍。</p><p>

10、  整個鉆孔范圍的溫度回應(yīng)被轉(zhuǎn)換到一組非線性的溫度反饋因數(shù),被稱做G-函數(shù)。這個G-函數(shù)使得與某一時間內(nèi)的特定熱量輸入相應(yīng)引起的地耦孔壁的溫度變化情況的計算成為可能。一經(jīng)鉆孔范圍的反饋對階梯熱量的反饋用G-函數(shù)來表示, 任何的任意熱反饋函數(shù)能被藉由在一系列的階梯函數(shù)之上讓熱反饋/輸出決定, 而且疊加對每個梯度函數(shù)的反饋。</p><p>  這一過程對于四個月的熱反饋以圖示的方法在圖 1中表示。</p>

11、;<p>  基本的熱脈沖(從零到)是指歷經(jīng)整個過程4個月后的熱量峰值,其值=。次級脈沖=- ,為3個月期間后的峰值。同理,=- 為兩個月期末峰值,最后,=- 指一個月后的熱量峰值。因此,任何時間地耦孔壁的溫度都能夠由這四個階梯函數(shù)計算確定。從數(shù)學(xué)角度來看,在第n時期的末期,受位置因素影響的地耦孔壁的溫度如下:</p><p><b>  其中:</b></p>

12、<p><b>  t =時間(s) </b></p><p>  H =孔井深度(m)k=巖土導(dǎo)熱系數(shù)(W/(m.k))</p><p>  =孔井平均溫度(℃) </p><p>  =巖土穩(wěn)態(tài)溫度(℃)</p><p>  Q=階梯熱反饋脈沖(W/m) </p><p><

13、b>  = 孔徑(m)</b></p><p>  i =時間梯度結(jié)束指數(shù)</p><p><b>  2.1.2仿真模型</b></p><p>  這里所說的仿真模型的大部分細節(jié)已經(jīng)由Yavuzturk 和 Spitler所介紹。在本文中將會給出其簡要的描述。這個模型的主要目標(biāo)是應(yīng)用在建筑能量分析上,這模型能夠以每小時為單

14、位來預(yù)測系統(tǒng)能量消耗。此模型籍由Eskilson理論完善而發(fā)展將在這里被討論。Master的G-函數(shù)把預(yù)測頻率增加至一小時數(shù)次。Eskilson 用來測定G-函數(shù)的數(shù)據(jù)模型不適用于短時距測量,采用另一種數(shù)據(jù)模型來測算一個地耦孔短時間內(nèi)熱反饋/輸出脈沖的溫度反應(yīng)。對于短時間內(nèi)的熱脈沖來說,徑向位置地耦孔內(nèi)外的熱轉(zhuǎn)移比軸向位置的熱轉(zhuǎn)移影響大得多。由此,產(chǎn)生了一種二維徑向定容模型。詳情參見Yavuzturk,et al.(1999).<

15、/p><p><b>  2.2垂直圓形孔井</b></p><p>  垂直圓形孔井用于直接與巖土進行熱交換。一種用來研究垂直圓形孔井性能的數(shù)據(jù)模型已經(jīng)研發(fā)了,它由兩部分組成:地耦孔構(gòu)成的節(jié)點模型,附近地下水流動和巖土中熱傳遞定容模型。這種模型的運用包括對地下水流動導(dǎo)致的熱傳遞的明確處理(Rees,et al.2003) 。這種模型可以考察垂直圓形孔井的性能在使用中的影

16、響和重要意義。其性能在以下幾個參量中是最具敏感的:流量,地耦孔長度,巖土熱傳導(dǎo)率和水壓傳導(dǎo)率。</p><p><b>  2.3水源熱泵</b></p><p>  Jin和Spitler(2002a)發(fā)明了一種參量估算水源熱泵模型。這種模型對冷凍循環(huán)進行熱力學(xué)分析,比熱交換模型更簡單,同時比冷凍循環(huán)壓縮機模型更為精確。在第二篇論文(Jin,et al.2002b)

17、中,對這一模型進行擴展,包括回旋式空氣壓縮機的子模型和使用防凍劑的步驟。制造廠商的目錄數(shù)據(jù)中敘述了多變量優(yōu)化算法估算出的模型中的各種參量。Jin(2002)詳細敘述了多變量優(yōu)化算法和估算出的參量。比起在此之前生產(chǎn)的方程-適宜類型模型,水源熱泵模型更為精確。Jin(2002)還介紹了一種類似的水源熱泵模型。</p><p>  2.4混合式GSHP系統(tǒng)的熱量補償</p><p>  地源熱泵

18、系統(tǒng)中地耦孔的成本是系統(tǒng)成本的重要部分,但它主要取決于當(dāng)?shù)氐刭|(zhì)狀況。這種裝置主要用于制冷建筑物中。在這種巖土的導(dǎo)熱性差,鉆孔條件簡陋的地方,水源熱泵系統(tǒng)的成本的比較昂貴。盡管如此,我們可以采取初次成本與能效折中的辦法,縮小耦孔范圍,在熱泵水管內(nèi)安裝輔助散熱裝置。這樣的系統(tǒng)稱為混合型地源熱泵系統(tǒng)。</p><p>  混合系統(tǒng)的水管中有各種不同類型的散熱裝置,比如冷卻塔,帶換熱器的淺水池,液壓加熱面或者叫橋?qū)?。Ch

19、iasson(2002a)發(fā)明了淺水池模型,其原理是:由于閉循環(huán)換熱器,需要在水層表面安裝天然熱傳遞裝置的基礎(chǔ)上安裝對流換熱裝置。Chiasson(2000b)同時還發(fā)明了一種適用于液壓加熱面或者叫橋?qū)拥挠邢薏罘帜P?。這種模型甚至能夠模仿積雪融化過程。以上這些模型使用試驗性的輔助散熱裝置,在俄克拉荷馬州大學(xué)得到認可。</p><p>  3.土壤熱量特性的現(xiàn)場測定</p><p>  測量

20、深層巖土的熱傳導(dǎo)性對于地源熱泵系統(tǒng)來說至關(guān)重要。地耦孔的寬度長度主要取決于深層巖土的熱物性。測定深層巖土的熱傳導(dǎo)性的傳統(tǒng)方法是首先確定地耦孔周圍巖土的類型。確定后,可以通過《雙管熱泵系統(tǒng)設(shè)計手冊》中關(guān)于巖土類型的資料來測定其熱傳導(dǎo)性(EPRI1989)。據(jù)報道,巖土信息中的熱傳導(dǎo)性有更廣泛的價值,因此能找到一種更精確地測定巖土熱傳導(dǎo)性的方法就更好了。</p><p>  深層巖土的熱傳導(dǎo)性不能直接測定,只能通過溫

21、熱變換測定法來推斷,還需利用一些地?zé)醾鬟f模式,比如線形水源法(Ingersoll and Plass1948;Mogensen1983)或者柱形水源法(Carslaw and Jaeger1947)。有趣的是它們還有相反的用途——由巖土的性能來測定其熱物性,而不是由巖土的熱物性來測定其性能。雖然線形水源法和柱形水源法可以反過來運用于測算巖土熱傳導(dǎo)性,但是仍然需要做一些簡單假設(shè),因為其影響結(jié)果是不易測定的。采用地耦孔詳細數(shù)據(jù)模型,對地耦孔

22、幾何學(xué)和熱流體,管道。泥漿以及巖土的熱物性進行詳細描述,可以減少簡單假設(shè)造成的不確定因素。這樣,對地?zé)醾鲗?dǎo)性就會有一個更精確的估算。</p><p>  巖土溫度反應(yīng)的分析步驟有兩中基本類型:分析法(Witte,et al.2002)和參量估算法(Austin1998;Austin et al.2000;Shonder and Beck1999)。Witte et al(2002)用線形水源法和不確定分析法對巖土

23、熱傳導(dǎo)性進行現(xiàn)場測試。Austinet al(2000)的參量估算法是用垂直鉆孔的瞬態(tài)二維數(shù)據(jù)定容模式來測算一個已知的變時間的熱流量輸入的巖土溫度反應(yīng)。Nelder Mead 的單工運算法則被用來發(fā)掘巖土和泥漿熱傳導(dǎo)性的最有價值的用途,那就是把實驗測量的溫度反應(yīng)和估算的溫度反應(yīng)之間的差值減小到最低限度。</p><p>  測量巖土熱傳導(dǎo)性的實驗裝置是由Eklof,Gehlin(1996)和Austin(1998

24、)自主發(fā)明的。圖5是Austin et al.(2000)發(fā)明的測試系統(tǒng)的示意圖。實驗裝置放在一個可以拖動的拖車?yán)?。地耦孔安裝被一個長達50 小時的試驗證明是滿意的。一個較短的試驗時間是非常合人心意的, 而且可能是將來研究的主題。</p><p><b>  外文翻譯:</b></p><p>  <<Source heat pump system sim

25、ulation and design abstract>> Summarized the recent years source heat pump system simulation and the design aspect research and the progress.First has given the source heat pump system various parts modelling aspec

26、t progress, including the vertical pipe installation geothermy heat interchanger, the single well circulatory system as well as several kind of assistance heat dissipating arrangement which uses in the place source heat

27、pump mix system.Next, discusses the s</p><p>  synopses looked from thermodynamics viewpoint that, uses the source hot work in the air-conditioning system for the heat source or the heat sink is appealing.Th

28、is is because, looked from the whole year, its temperature ratio environment dry bulb or the wet-bulb temperature approach (needs) in the room the temperature.Based on this reason, the source heat pump system has the pot

29、ential compared with the air source heat pump system in the high efficiency.In actual situation, source heat pump system</p><p>  Although already had some source heat pump system technology to obtain the de

30、velopment in the Scandinavian peninsula, but in its commercial development use was actually does well in US.This is mainly is because already has a very big housing air-conditioning system market in US.Because its system

31、 has the low energy consumption and the low operating cost already proved has attracted very many owners.Uses electricity the peak value in American very many areas to be decided by the air conditioning </p><p

32、>  Meets down in the paper in the part we first can give the source heat pump system various parts modelling aspect progress, including the vertical pipe installation geothermy heat interchanger, the water source heat

33、 pump, the single well circulatory system as well as several kind of assistance heat dissipating arrangement which uses in the place source heat pump mix system.Because must design the underground heat interchanger first

34、 to have to understand the geothermy the attribute, this paper sec</p><p>  The 2.GSHP system model constitutes the GSHP system generally is composed by the water source heat pump and the underground heat in

35、terchanger, regarding mixes the GSHP system, but also includes several kind of assistance heat dissipating arrangement.These simulation equipment is covered in unde</p><p>  shuts the circulation underground

36、 heat interchanger to shut the circulation double barrel systems to be possible to use the horizontal pipe installation or the vertical pipe installation.Vertical pipe installation system as a result of it high heat tran

37、sfer efficiency by people many uses.This kind of type closed cycle heat interchanger sets at into the diameter by a root is 75mm~150mm the drill hole U tube is composed.These drill holes after set at into the U tube with

38、 the earth backfill which d</p><p>  Two kind of simulation complexity are very interesting.First, the survey underground heat interchanger user's smallest input design method is may take in the unit tim

39、e.Next, its can forecast in for several hours (or short time curve) because the building load continuously change has what influence to the underground heat interchanger the simulation pattern also is also is may take.Th

40、is theory permission and uses electricity the demand forecast to the system energy consumption.Because both method</p><p>  2.1.1 Eskison research techniques</p><p>  Eskison (1987) aims at the

41、pair hole the ambient temperature distribution definite question solution uses the means which the logic analysis and the mathematical analysis unify.Regarding the initial condition and in the boundary condition constant

42、 even soil the pair hole related value establishment radial direction - axial coordinates, the use transient state finite difference equation carries on the two-dimensional value computation individually.The pipe wall an

43、d the mud and so on the individua</p><p>  The entire drill hole scope temperature response is transformed to a group of non-linear temperature feedback factor, was called makes the G- function.This G- funct

44、ion possibly causes the place pair opening wall temperature change situation computation which the specific heat input causes correspondingly with some time in into.As soon as passes through the drill hole scope the feed

45、back to indicate to the steps and ladders quantity of heat feedback with the G- function that, any random temperatur</p><p>  This process expressed regarding four month-long temperature feedbacks by the gra

46、phical representation method in Figure 1.</p><p>  2.1.2 simulation model here said the simulation model majority of details already introduced by Yavuzturk and Spitler.In this paper will be able to give its

47、 brief description.This model essential target is the application in the construction energy analysis, this model can forecast the system energy consumption take each hour as the unit.This model nationality will consumma

48、te by the Eskilson theory develops is discussed in here.The Master G- function increased the forecast frequency to an hour s</p><p>  2.2 vertical circular hole well vertical circular hole well uses in direc

49、tly carrying on the heat change with the ground.One kind used for to study the vertical circular hole well performance the data model already to research and develop, it was composed by two parts: Pair hole constitution

50、node model, in nearby ground water flowing and ground heat transfer constant volume model.This kind of model utilization including the heat transfer which causes to the ground water flowing is clear about pr</p>&

51、lt;p>  2.3 water source heat pump Jin and Spitler(2002a) has invented one kind of parameter estimate water source heat pump model.This kind of model carries on the thermodynamic analysis to the freezing circulation, t

52、he specific heat exchange model is simpler, simultaneously is more precise than the freezing circulation compressor model.In the second paper (Jin, et al.2002b), carries on the expansion to this model, including maneuver

53、 type air compressor sub-model and use antifreeze step.In the manufact</p><p>  In 2.4 mixed style GSHP system thermal compensation source heat pump system the pair hole cost is the system cost important par

54、t, but it mainly is decided by the local geology condition.This kind of equipment mainly uses in refrigerating in the building.Is bad in this kind of ground thermal conductivity, drill hole condition crude place, water s

55、ource heat pump system cost quite expensive.For all this, we may adopt the primary cost with to be able the effect compromise means, reduces the pair hol</p><p>  In the mix system water pipe has each kind o

56、f different type heat dissipating arrangement, for instance the cooling tower, brings the heat interchanger shallow pool, the hydraulic pressure heating surface or is called the bridge level.Chiasson(2002a) has invented

57、the shallow pool model, its principle is: Because shuts the circulation heat interchanger, needs to install the counter-flow heat transfer installment in the water level surface mounting natural heat transfer installment

58、 foundation.Chia</p><p>  soil quantity of heat characteristic scene determination survey in-depth ground heat conductivity regarding the place source heat pump system very important.The pair hole width leng

59、th mainly is decided by in-depth ground hot nature.The determination in-depth ground heat conductivity traditional method is first definite around the pair hole the ground type.After the determination, may determine its

60、heat conductivity through "Double barrel Heat pump System design Handbook" about the ground type ma</p><p>  The ground temperature responded the analysis step has two basic types: Analytic method

61、(Witte, et al.2002) and parameter estimate law (Austin1998; Austin et al.2000; Shonder and Beck1999).Witte et al(2002) uses the linear water source law and the indefinite analytic method carries on the scene test to the

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論