版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p><b> 英文文章:</b></p><p> Fatigue life prediction of the metalwork of </p><p> a travelling gantry crane</p><p> V.A. Kopnov</p><p><b> Abst
2、ract</b></p><p> Intrinsic fatigue curves are applied to a fatigue life prediction problem of the metalwork of a traveling gantry crane. A crane, used in the forest industry, was studied in working co
3、nditions at a log yard, an strain measurements were made. For the calculations of the number of loading cycles, the rain flow cycle counting technique is used. The operations of a sample of such cranes were observed for
4、a year for the average number of operation cycles to be obtained. The fatigue failure analysis ha</p><p> Key words: Cranes; Fatigue assessment; Strain gauging</p><p> 1. Introduction</p>
5、;<p> Fatigue failures of elements of the metalwork of traveling gantry cranes LT62B are observed frequently in operation. Failures as fatigue cracks initiate and propagate in welded joints of the crane bridge an
6、d supports in three-four years. Such cranes are used in the forest industry at log yards for transferring full-length and sawn logs to road trains, having a load-fitting capacity of 32 tons. More than 1000 cranes of this
7、 type work at the enterprises of the Russian forest industry. The problem </p><p> 2. Analysis of the crane operation</p><p> For the analysis, a traveling gantry crane LT62B installed at log
8、yard in the Yekaterinburg region was chosen. The crane serves two saw mills, creates a log store, and transfers logs to or out of road trains. A road passes along the log store. The saw mills are installed so that the re
9、ception sites are under the crane span. A schematic view of the crane is shown in Fig. 1.</p><p> 1350-6307/99/$一see front matter 1999 Elsevier Science Ltd. All rights reserved.</p><p> PII:
10、S 1 3 5 0一6307(98) 00041一7</p><p> A series of assumptions may be made after examining the work of cranes:</p><p> ·if the monthly removal of logs from the forest exceeds the processing r
11、ate, i.e. there is a creation of a log store, the crane expects work, being above the centre of a formed pile with the grab lowered on the pile stack;</p><p> ·when processing exceeds the log removal f
12、rom the forest, the crane expects work above an operational pile close to the saw mill with the grab lowered on the pile;</p><p> ·the store of logs varies; the height of the piles is considered to be
13、a maximum;</p><p> ·the store variation takes place from the side opposite to the saw mill;</p><p> ·the total volume of a processed load is on the average k=1.4 times more than the
14、total volume of removal because of additional transfers.</p><p> 2.1. Removal intensity</p><p> It is known that the removal intensity for one year is irregular and cannot be considered as a
15、 stationary process. The study of the character of non-stationary flow of road trains at 23 enterprises Sverdlesprom for five years has shown that the monthly removal intensity even for one enterprise essentially varies
16、from year to year. This is explained by the complex of various systematic and random effects which exert an influence on removal: weather conditions, conditions of roads and lorry fleet,</p><p> Therefore,
17、the less possibility of removing wood in the season between spring and autumn, the more intensively the wood removal should be performed in winter. While in winter the removal intensity exceeds the processing considerabl
18、y, in summer, in most cases, the more full-length logs are processed than are taken out.</p><p> From the analysis of 118 realizations of removal values observed for one year, it is possible to evaluate the
19、 relative removal intensity g(t) as percentages of the annual load turnover. The removal data fisted in Table 1 is considered as expected values for any crane, which can be applied to the estimation of fatigue life, and,
20、 particularly, for an inspected crane with which strain measurement was carried out (see later). It would be possible for each crane to take advantage of its load turnover</p><p> The distribution of remova
21、l value Q(t) per month performed by the relative intensity q(t) is written as</p><p> where Q is the annual load turnover of a log store, A is the maximal designed store of logs in percent of Q. Substitutin
22、g the value Q, which for the inspected crane equals 400,000 m3 per year, and A=10%, the volumes of loads transferred by the crane are obtained, which are listed in Table 2, with the total volume being 560,000 m3 for one
23、year using K,.</p><p> 2.2. Number of loading blocks</p><p> The set of operations such as clamping, hoisting, transferring, lowering, and getting rid of a load can be considered as one operat
24、ion cycle (loading block) of the crane. As a result to investigations, the operation time of a cycle can be modeled by the normal variable with mean equal to 11.5 min and standard deviation to 1.5 min. unfortunately, thi
25、s characteristic cannot be simply used for the definition of the number of operation cycles for any work period as the local processing is extremely </p><p> The volume of a unit load can be modeled by a ra
26、ndom variable with a distribution function(t) having mean22 m3 and standard deviation 6;一3 m3, with the nominal volume of one pack being 25 m3. Then, knowing the total volume of a processed load for a month or year, it i
27、s possible to determine distribution parameters of the number of operation cycles for these periods to take advantage of the methods of renewal theory [1].</p><p> According to these methods, a random renew
28、al process as shown in Fig. 2 is considered, where the random volume of loads forms a flow of renewals: </p><p> In renewal theory, realizations of random:,,,having a distribution function F(t), are unders
29、toodas moments of recovery of failed units or request receipts. The value of a processed load:,,after}th operation is adopted here as the renewal moment.</p><p> Let F(t)=P﹛<t﹜. The function F(t) is define
30、d recurrently,</p><p> Let v(t) be the number of operation cycles for a transferred volume t. In practice, the total volume of a transferred load is essentially greater than a unit load, and it is useful t
31、herefore totake advantage of asymptotic properties of the renewal process. As follows from an appropriate</p><p> limit renewal theorem, the random number of cycles v required to transfer the large volume t
32、 hasthe normal distribution asymptotically with mean and variance.</p><p> without dependence on the form of the distribution function月t) of a unit load (the restriction is imposed only on nonlattice of the
33、 distribution).</p><p> Equation (4) using Table 2 for each averaged operation month,function of number of load cycles with parameters m,. and 6,., which normal distribution in Table 3. Figure 3 shows the a
34、verage numbers of cycles with 95 % confidence intervals. The values of these parameters</p><p> for a year are accordingly 12,719 and 420 cycles.</p><p> 3. Strain measurements</p><
35、p> In order to reveal the most loaded elements of the metalwork and to determine a range of stresses, static strain measurements were carried out beforehand. Vertical loading was applied by hoisting measured loads, a
36、nd skew loading was formed with a tractor winch equipped with a dynamometer. The allocation schemes of the bonded strain gauges are shown in Figs 4 and 5. As was expected, the largest tension stresses in the bridge take
37、place in the bottom chord of the truss (gauge 11-45 MPa). The top c</p><p> being less compressed than the top one (gauge 17-75 and 10-20 MPa). The other elements of the bridge are less loaded with stresses
38、 not exceeding the absolute value 45 MPa. The elements connecting the support with the bridge of the crane are loaded also irregularly. The largest compression stresses take place in the carrying angles of the interior p
39、anel; the maximum stresses reach h0 MPa (gauges 8 and 9). The largest tension stresses in the diaphragms and angles of the exterior panel reach 45 MPa</p><p> The elements of the crane bridge are subjected,
40、 in genera maximum stresses and respond weakly to skew loads. The suhand, are subjected mainly to skew loads.1, to vertical loads pports of the crane gmmg rise to on the other</p><p> The loading of the met
41、alwork of such a crane, transferring full-length logs, differs from that of a crane used for general purposes. At first, it involves the load compliance of log packs because of progressive detachment from the base. There
42、fore, the loading increases rather slowly and smoothly.The second characteristic property is the low probability of hoisting with picking up. This is conditioned by the presence of the grab, which means that the fall of
43、the rope from the spreader block is no</p><p> When a high acceleration with the greatest possible clearance in the joint between spreader andgrab takes place, the tension of the ropes happens 1 s after swi
44、tching the electric drive on, the clearance in the joint taking up. The revolutions of the electric motors reach the nominal value in O.}r0.7 s. The detachment of a load from the base, from the moment of switching electr
45、ic motors on to the moment of full pull in the ropes takes 3-3.5 s, the tensions in ropes increasing smoothly to maximum.</p><p> When a rigid load is lifted, the accelerated velocity of loading in the rope
46、 hanger and metalwork is practically the same as in case of fast hoisting of a log pack. The metalwork oscillations are characterized by two harmonic processes with periods 0.6 and 2 s, which have been obtained from spec
47、tral analysis. The worst case of loading ensues from summation of loading amplitudes so that the maximum excess of dynamic loading above static can be 13-14%.Braking a load, when it is lowered, induces si</p><
48、p> 4. Fatigue loading analysis</p><p> Strain measurement at test points, disposed as shown in Figs 4 and 5, was carried out during the work of the crane and a representative number of stress oscillogra
49、ms was obtained. Since a common operation cycle duration of the crane has a sufficient scatter with average value } 11.5min, to reduce these oscillograms uniformly a filtration was implemented to these signals, and all r
50、epeated values, i.e. while the construction was not subjected to dynamic loading and only static loading occurred, we</p><p> Fig. 6 where the interior sequence of loading for an operation cycle is visible.
51、 At first, stresses</p><p> increase to maximum values when a load is hoisted. After that a load is transferred to the necessary location and stresses oscillate due to the irregular crane movement on rails
52、and over rail joints resulting mostly in skew loads. The lowering of the load causes the decrease of loading and forms half of a basic loading cycle.</p><p> 4.1. Analysis of loading process amplitudes</
53、p><p> Two terms now should be separated: loading cycle and loading block. The first denotes one distinct oscillation of stresses (closed loop), and the second is for the set of loading cycles during an operat
54、ion cycle. The rain flow cycle counting method given in Ref. [2] was taken advantage of to carry out the fatigue hysteretic loop analysis for the three weakest elements: (1) angle of the bottom chord(gauge 11), (2) I-bea
55、m of the top chord (gauge 17), (3) angle of the support (gauge 8). Statistical</p><p> 4.2. Numbers of loading cycles</p><p> During the rain flow cycle counting procedure, the calculation of
56、number of loading cycles for the loading block was also carried out. While processing the oscillograms of one type, a sample number of loading cycles for one block is obtained consisting of integers with minimum and maxi
57、mum observed values: 24 and 46. The random number of loading cycles vibe can be described</p><p> by the Poisson distribution with parameter =34.</p><p> Average numbers of loading blocks via
58、months were obtained earlier, so it is possible to find the appropriate characteristics not only for loading blocks per month, but also for the total number of loading cycles per month or year if the central limit theore
59、m is taken advantage of. Firstly, it is known from probability theory that the addition of k independent Poisson variables gives also a random variable with the Poisson distribution with parameter k},. On the other hand,
60、 the Poisson distribut</p><p> 5. Stress concentration factors and element endurance</p><p> The elements of the crane are jointed by semi-automatic gas welding without preliminary edge prepar
61、ation and consequent machining. For the inspected elements 1 and 3 having circumferential and edge welds of angles with gusset plates, the effective stress concentration factor for fatigue is given by calculation methods
62、 [3], kf=2.}r2.9, coinciding with estimates given in the current Russian norm for fatigue of welded elements [4], kf=2.9.</p><p> The elements of the crane metalwork are made of alloyed steel 09G2S having a
63、n endurance limit of 120 MPa and a yield strength of 350 MPa. Then the average values of the endurance limits of the inspected elements 1 and 3 are ES一l=41 MPa. The variation coefficient is taken as 0.1, and the correspo
64、nding standard deviation is 6S-、一4.1 MPa.</p><p> The inspected element 2 is an I-beam pierced by holes for attaching rails to the top flange. The rather large local stresses caused by local bending also pr
65、omote fatigue damage accumulation. According to tables from [4], the effective stress concentration factor is accepted as kf=1.8, which gives an average value of the endurance limit as ES一l=h7 Map. Using the same variati
66、on coiffing dent th e stand arid d emit ion is =6.7 MPa.</p><p> An average S-N curve, recommended in [4], has the form:</p><p> with the inflexion point No=5·106 and the slope m=4.5 fo
67、r elements 1 and 3 and m=5.5 for element 2.</p><p> The possible values of the element endurance limits presented above overlap the ranges of load amplitude with nonzero probability, which means that these
68、elements are subjected to fatigue damage accumulation. Then it is possible to conclude that fatigue calculations for the elements are necessary as well as fatigue fife prediction.</p><p> 6. Life prediction
69、</p><p> The study has that some elements of the metalwork are subject to fatigue damage accumulation.To predict fives we shall take advantage of intrinsic fatigue curves, which are detailed in [5]and [6].&
70、lt;/p><p> Following the theory of intrinsic fatigue curves, we get lognormal life distribution densities for the inspected elements. The fife averages and standard deviations are fisted in Table 5. The lognor
71、mal fife distribution densities are shown in Fig. 7. It is seen from this table that the least fife is for element 3. Recollecting that an average number of load blocks for a year is equal to 12,719, it is clear that the
72、 average service fife of the crane before fatigue cracks appear in the welded elem</p><p> 7. Conclusions</p><p> The analysis of the crane loading has shown that some elements of the metalwor
73、k are subjectedto large dynamic loads, which causes fatigue damage accumulation followed by fatigue failures.The procedure of fatigue hfe prediction proposed in this paper involves tour parts:</p><p> (1) A
74、nalysis of the operation in practice and determination of the loading blocks for some period.</p><p> (2) Rainflow cycle counting techniques for the calculation of loading cycles for a period of standard o
75、peration.</p><p> (3) Selection of appropriate fatigue data for material.</p><p> (4) Fatigue fife calculations using the intrinsic fatigue curves approach.</p><p> The results o
76、f this investigation have been confirmed by the cases observed in practice, and the manufacturers have taken a decision about strengthening the fixed elements to extend their fatigue lives.</p><p><b>
77、 中文翻譯</b></p><p> 龍門式起重機金屬材料的疲勞強度預測</p><p><b> v.a.科普諾夫</b></p><p><b> 摘要</b></p><p> 內在的疲勞曲線應用到龍門式起重機金屬材料的疲勞壽命預測問題。起重機,用于在森林工業(yè)中,在伐木林場
78、對各種不同的工作條件進行研究,并且做出相應的應變測量。對載重的循環(huán)周期進行計算,下雨循環(huán)計數技術得到了使用。在一年內這些起重機運作的樣本被觀察為了得到運作周期的平均數。疲勞失效分析表明,一些元件的故障是自然的系統(tǒng)因素,并且不能被一些隨意的原因所解釋。1999年Elsevier公司科學有限公司。保留所有權利。</p><p> 關鍵詞:起重機;疲勞評估;應變測量</p><p> 1.緒
79、論 頻繁觀測龍門式起重機LT62B在運作時金屬元件疲勞失效。引起疲勞裂紋的故障沿著起重機的橋梁焊接接頭進行傳播,并且能夠支撐三到四年。這種起重機在森林工業(yè)的伐木林場被廣泛使用,用來轉移完整長度的原木和鋸木到鐵路的火車上,有一次裝載30噸貨物的能力。 這種類型的起重機大約1000臺以上工作在俄羅斯森林工業(yè)的企業(yè)中。限制起重機壽命的問題即最弱的要素被正式找到之后,預測其疲勞強度,并給制造商建議,以提高起重機的壽命。&
80、lt;/p><p> 2.起重機運行分析 為了分析,在葉卡特琳堡地區(qū)的林場碼頭選中了一臺被安裝在葉卡特琳堡地區(qū)的林場碼頭的龍門式起重機LT62B, 這臺起重機能夠供應兩個伐木廠建立存儲倉庫,并且能轉運木頭到鐵路的火車上,這條鐵路通過存儲倉庫。這些設備的安裝就是為了這個轉貨地點在起重機的跨度范圍之內。一個起重機示意圖顯示在圖1中 。 1350-6307/99 /元,看到前面的問題。 1999
81、年Elsevier公司科學有限公司保留所有權利。 PH:S1350-6307(98)00041-7</p><p> V.A.Kopnov|機械故障分析6(1999)131-141</p><p><b> 圖1 起重機簡圖</b></p><p> 檢查起重機的工作之后,一系列的假設可能會作出: ·如果每月從森林移動的原木
82、超過加工率,即是有一個原木存儲的倉庫,這個起重機期待的工作,也只是在原木加工的實際堆數在所供給原木數量的中心線以下;·當處理超過原木從森林運出的速度時,起重機的工作需要在的大量的木材之上進行操作,相當于在大量的木材上這個鋸木廠賺取的很少;·原木不同的倉庫;大量的木材的高度被認為是最高的; ·倉庫的變化,取替了一側對面的鋸軋機; ·裝載進程中總量是平均為K=1.4倍大于移動總量由于額外的轉移
83、。</p><p> 2.1 搬運強度 據了解,每年的搬運強度是不規(guī)律的,不能被視為一個平穩(wěn)過程。非平穩(wěn)流動的道路列車的性質在23家企業(yè)中已經研究5年的時間,結果已經表明在年復一年中,對于每個企業(yè)來說,每個月的搬運強度都是不同的。這是解釋復雜的各種系統(tǒng)和隨機效應,對搬運施加的影響:天氣條件,道路條件和貨車車隊等,所有木材被運送到存儲倉庫的木材,在一年內應該被處理。 因此,在春季和秋季搬運
84、木頭的可能性越來越小,冬天搬運的可能性越來越大,然而在冬天搬運強度強于預想的,在夏天的情況下,更多足夠長的木材就地被處理的比運出去的要多的多。</p><p> V.A.Kopnov|機械故障分析6(1999)131-141</p><p> 表1 搬運強度(%)</p><p><b> 表2 轉移儲存量</b></p>
85、<p> 通過一年的觀察,從118各搬運值的觀察所了解到的數據進行分析,并且有可能評價相關的搬運強度(噸)參考年度的裝載量的百分比。該搬運的數據被記錄在起重機預期值表1中,它可以被應用到估計疲勞壽命,尤其是為檢查起重機應變測量(見稍后) 。將有可能為每個起重機,每一個月所負荷的載重量,建立這些數據,無需特別困難的統(tǒng)計調查。此外,為了解決這個問題的壽命預測的知識是未來的荷載要求, 在類似的操作條件下,我們采取起重機預期值。&l
86、t;/p><p> 每月搬運價值的分布Q(t) ,被相對強度q(t)表示為 </p><p> 其中Q是每年的裝載量的記錄存儲,是設計的最大存儲原木值Q以百分比計算,其中為考察起重機等于40.0萬立方米每年, 和容積載重搬運為10 % 的起重機,得到的數據列在表2 中,總量56000立方米每年,用K表示。</p><p> 2.2 裝載木塊的數量
87、 這個運行裝置,如夾緊,吊裝,轉移,降低,和釋放負載可被視為起重機的一個運行周期(加載塊)。參照這個調查結果,以操作時間為一個周期,作為范本,由正常變量與平均值11.5分相等等,標準差為1.5分鐘。不幸的是,這個特點不能簡單地用于定義運作周期的數目,任何工作期間的載重加工是非常不規(guī)則。使用運行時間的起重機和評價周期時間,,與實際增加一個數量的周期比,很容易得出比較大的誤差,因此,最好是作為如下。
88、160;測量一個單位的載荷,可以作為范本,由一個隨機變量代入分布函數得出,并且比實際一包貨物少然后,明知總量的加工負荷為1個月或一年可能確定分布參數的數目,運作周期為這些時期要利用這個方法的更新理論</p><p> V.A.Kopnov|機械故障分析6(1999)131-141</p><p> 圖2 隨機重建過程中的負荷</p><p> 根據這些方法,隨
89、機重建過程中所顯示的圖。二是考慮到, (隨機變量)負荷,形成了一個流動的數據鏈:</p><p> 在重建的理論中,隨機變量:,有一個分布函數f(t)的,可以被理解為在失敗的連接或者要求收據時的恢復時刻。過程的載荷值,作為下一次的動作的通過值,被看作是重建的時刻。</p><p> 設。函數f(t)反復被定義,假設V ( t )是在運作周期內轉移貨物的數量。實踐中,總轉移貨物的總噸數,
90、基本上是大于機組負荷,,由于利用漸近性質的重建過程所以式有益的。根據下面適當的限制重建定理,需要轉移大量噸數。已正態(tài)分布漸近與均值和方差,確定抽樣數量的周期v</p><p> 而不依賴于整個的形式分布函數的,(只對不同的格式分配進行限制)。利用表2的每個月平均運作用方程(4)表示,賦予正態(tài)分布功能的數量,負載周期與參數m和6。在正態(tài)分布表3中 。圖3顯示的平均人數周期與95 %的置信區(qū)間某一年的相應的值為12
91、719和420個周期。</p><p> 表3 運作周期的正太分布</p><p> 3 .應變測量 為了顯示大多數金屬的負載元素,并且確定一系列的壓力,事前做了靜態(tài)應變測量。垂直載荷用來測量懸掛負載,并且斜交加載由一個牽引力所形成,配備了一臺測力計。靜態(tài)應力值分布在圖4和5中 。同樣地預計,梁上的最大的拉應力,發(fā)生在底部的桁架上(值為11-45 MPA )。頂
92、端的桁架受到最大的壓縮應力。 此處的彎曲應力所造成的壓力,車輪起重機,手推車等被添加到所說的橋梁和負荷的重量。這些壓力的結果,在底部的共振的的I梁那么壓縮應力比最高的1 處要大得多(值17-75和10-20兆帕斯卡),其他要素的梁加載的值</p><p> V.A.Kopnov|機械故障分析6(1999)131-141</p><p><b> 月份</b><
93、;/p><p> 圖3 95%的置信區(qū)間運作周期的平均數</p><p> V.A.Kopnov|機械故障分析6(1999)131-141</p><p><b> 圖4梁的分配計劃</b></p><p> 不超過絕對值45兆帕斯卡。連接與支持的橋梁起重機加載的時間,也不定期。最大的壓縮應力發(fā)生在變形的最大角度,
94、在內部看來;最高壓力值將達到到h0MPa和痛苦(計8日和9 ) 。在隔板和角度1的支板上,最大的拉應力達到45兆帕斯卡(壓力表1 )。 起重機梁的器件在受到最大壓力和軸向載荷較弱的時候,另一方面,所遭受的主要是斜負荷。起重機的豎向載荷主要是由牽引力引起的。</p><p> 這種轉移完整長度的木材的起重機的金屬的載重量,不同于一般用途的起重機。首先它必須遵循起重機的裝載規(guī)則,由于逐步脫離基地。因此,負荷增加,并
95、不是慢慢的順利進行。 第二個特點是物質吊裝的加快導致低低效率。這是抓斗所存在的所限制,這意味著不允許繩索從吊具座下降;載重量應始終保持平衡。負載減弱加快電機運轉的可能性是沒有根據的,因此微乎其微。因此,以同時懸掛的速度,森林龍門式起重機受到較小的動應力與類似的一般用途的起重機相比而言。通常,當速度增加順利,在接通電器之后,從基地進行轉載3.5-4.5秒鐘進行一個循環(huán)。在事實上,并沒有發(fā)現金屬有顯著的振蕩,并且壓力慢慢達到了最大值。<
96、;/p><p> V.A.Kopnov|機械故障分析6(1999)131-141</p><p><b> 圖5 支持分配</b></p><p> 當可能性最明朗的時候,在伸展和抓取的結合處,在按下開關后一秒鐘繩索開始繃緊,在結合處清楚的發(fā)生。這個電動機以0.6-0.7每秒的速度進行旋轉。從按下開關到繩索完全拉緊這一刻,需要3-3.5 s
97、的時間,緊張的繩索慢慢的增加倒最長。梁的最大壓力增長倒最大值1-2 S并且平均振蕩為3.5 % 。 當一個固定的負荷解除時,加快速度,裝載在鋼絲繩上的吊具和金屬幾乎是相同的情況下快速吊起一堆捆扎的木材。該金屬金工振蕩的特點是有兩個諧波在0.6和2秒的過程當中,這些已經在前面的分析中獲得。從總結裝貨的振幅可以看出在最壞的情況下裝載貨物,使最高動態(tài)加載超過上述靜態(tài)載荷可以達到13-14 % 。制動一個負荷,當它逐漸
98、降低時,在金屬制品上產生顯著的振動應力,可以達到靜態(tài)載荷的7%左右。</p><p> 移動超過鋼軌接頭的3-4毫米的高度時,得到的只有微不足道的壓力。 在運行中,有可能的情況下,當源自不同類型的負荷加載結合起來。 當最高負荷從制動負荷時降低,是最大負荷情況配合制動手推車與同的調整制動器。</p><p><b> 4.疲勞載荷分析</b></p>
99、<p> 通過起重機的工作和壓力示波圖的獲得,在測試點進行應變測量,在圖6</p><p> 和第5中排列顯示,自一臺起重機的常見工作周期的時間由足夠的散射和平均值約為15分鐘,常見的運行周期的時間起重機有足夠的散射與平均價值11.5 ) </p><p> V.A.Kopnov|機械故障分析6(1999)131-141</p><p> 時間(0
100、.1分鐘)裝貨過程變化值</p><p> 民,以減少這些示意圖均勻過濾所產生的這些信號,和所有反復的形成的值,也就是說,當結構是不受到動態(tài)加載,只有靜態(tài)加載發(fā)生時,將會被拒絕。 三個特點強調示意圖 (表11 )顯示在表6中,而裝貨運行周期的內部結構是可見的。首先,當負載被提升時,壓力增加到最高值。當載荷被轉移到合適的位置并且強烈振蕩之后之后,由于不規(guī)則起重機運動對鋼軌及以上的鋼軌接頭導致大量的軸向載荷作為大多
101、數降低載荷的原因。減少貨物的裝載量導致裝載量減少,并且建成一項基本負載周期的一半。</p><p> 4.1 裝載過程中的振幅分析 這兩個名詞,現在應該分開:裝載周期和裝載量。第一是作為一獨特的振蕩講(閉環(huán)),二是為一套加載周期期間一個運行周期。 該雨流循環(huán)計數方法給出了最終裁決。[ 2 ]是采取優(yōu)勢,以前面提到的疲勞的強度回線分析,為三個最弱的要素:(1)底部角度的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 龍門式起重機金屬材料的疲勞強度預測外文翻譯
- 龍門式起重機金屬材料的疲勞強度預測外文翻譯
- 龍門式起重機金屬材料的疲勞強度預測外文翻譯
- 起重機設計外文翻譯---龍門式起重機金屬材料的疲勞強度預測
- 外文翻譯--龍門式起重機金屬材料的疲勞強度預測.doc
- 外文翻譯--龍門式起重機金屬材料的疲勞強度預測.doc
- 外文翻譯--龍門式起重機金屬材料的疲勞強度預測.doc
- 外文翻譯--龍門式起重機金屬材料的疲勞強度預測.doc
- 外文翻譯--龍門式起重機金屬材料的疲勞強度預測.doc
- 龍門式起重機金屬材料的疲勞強度預測外文翻譯.doc
- 外文翻譯--龍門式起重機金屬材料的疲勞強度預測.doc
- 外文翻譯--龍門式起重機金屬材料的疲勞強度預測.doc
- 龍門式起重機金屬材料的疲勞強度預測外文翻譯.doc
- 外文翻譯--龍門式起重機金屬材料的疲勞強度預測.doc
- 外文翻譯--龍門式起重機金屬材料的疲勞強度預測.doc
- 外文翻譯--龍門式起重機金屬材料的疲勞強度預測 英文版
- 外文翻譯--龍門式起重機金屬材料的疲勞強度預測 中文版
- 外文翻譯--龍門式起重機金屬材料的疲勞強度預測 中文版.doc
- 外文翻譯--龍門式起重機金屬材料的疲勞強度預測 英文版.pdf
- [機械模具數控自動化專業(yè)畢業(yè)設計外文文獻及翻譯]【期刊】龍門式起重機金屬材料的疲勞強度預測-中文翻譯
評論
0/150
提交評論