版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p> Long and light——《Bridge design & engineering》</p><p> Closure of the main span on the Sundoya Bridge in Norway is expected to take place in the first week after Easter. This graceful crossing
2、, the second longest of its type in the world, is being built in situ using high performance concrete </p><p> Sundoya Bridge is situated in one of Norway's most scenic areas, only 100km south of the Ar
3、ctic Circle. The 538m-long bridge spans Sundet, and when it is complete will provide a ferry-free road connection between Sundoya and the mainland. It is located some 35km west of the city of Mosjoen, close to highway 78
4、 between Mosjoen and Sandnessjoen. </p><p> It will be the second large bridge project connecting Alstenoya to the mainland, coming more than 12 years after the Helgeland Bridge was opened. The region is no
5、 stranger to world-record scale bridges ?the Helgeland Bridge's 425m long main span was the longest cable-stayed span in the world when it opened in 1992. </p><p> Sundoya Bridge is divided into three s
6、pans; it has a main span of 298m and two side spans of 120m. The main span will be the second longest span in the world for a continuous post-tensioned cast in place box section concrete bridge. </p><p> In
7、 terms of its design, consultant Dr Ing Aas-Jakobsen has followed a similar approach to that taken for the Raftsundet Bridge, opened in 1998, to which the Sundoya Bridge will almost be a twin. The two bridges have identi
8、cal main spans, but Raftsundet has four spans as opposed to Sundoya's three. Contractor AS Anlegg, which is part of the joint venture building Sundoya, was also the contractor on the Raftsundet Bridge, and architect
9、Boarch Arkitekter has also worked on the two schemes. </p><p> In January 2001 the joint venture company AF Sundoybrua won the contract from client Statens Vegvesen to build the Sundoya Bridge. This joint v
10、enture consisted of the contractors Reinertsen Anlegg and NCC Construction. </p><p> High performance concrete is central to the design of the bridge ?both normal weight HPC and lightweight HPC. Normal weig
11、ht concrete, at approximately 2500kg/m3, is used for the 120m side spans, while lightweight concrete, which weighs in at about 1970kg/m3, is used for construction of the 298m main span. This enables construction to proce
12、ed using the balanced cantilever method. </p><p> Local rock from Norway is used as the aggregate for the normal weight concrete, but the lightweight concrete required an imported solution. Normally the agg
13、regate used for lightweight concrete in Europe is expanded clay or shale, but this material has high levels of absorption and for this reason, regulations prevent such concrete from being pumped. </p><p> I
14、n order to address this, the contractor adopted a similar solution to that used on Raftsundet Bridge ?importing Stalite aggregate from South Carolina in the USA. Stalite is produced through thermal expansion of high qual
15、ity slate, and results in a lightweight aggregate that gives concrete of very high strength at low unit weights. Its low absorption of approximately 6% and high particle strength are two of the factors that allow Stalite
16、 to achieve high strength concrete in excess of 82.7MPa, th</p><p> According to AF Sundoybrua quality manager Jan-Eirik Nilsskog, this material has given a very good result. It produces concrete that is ea
17、sy to pour into the formwork and it gives a good surface finish, he says. It is being pumped some 120m along the bridge deck to the concreting position. Concrete is produced by a transportable mobile plant located only 1
18、km from the bridge site. Constant monitoring of the concrete weight is necessary to ensure that the cantilevers are properly balanced. This is</p><p> The project began in January 2001 at Aker Verdal with t
19、he production of caissons for the pier bases. In May 2001 the two caissons were towed 500km north to the bridge site. </p><p> The bridge is being poured in situ using special mobile construction equipment
20、developed by NRS. The cycle for construction of each 5m wide bridge segment is a week, and two mobile units are being used on the Sundoya Bridge. These particular units were built for AS Anlegg to use on the Varodden Bri
21、dge in Kristiansand in Norway, and they have also been used by the same contractor on the Rafsundet Bridge. The design of the central part of the main span of the bridge is based on the use of lightwei</p><p&g
22、t; The structure is a single cell, prestressed rectangular box girder, largely built using the travelling formwork system from NRS. The box width is 7m and its depth varies from 3m at the centre of the span to 14.5m ove
23、r the piers. Close to the abutments, concrete of quality C25 will be used inside the box girder as ballast. In addition, the designers have included the necessary elements inside the box girder in order to allow the poss
24、ible addition of post-tensioning cables in the future. The long-</p><p> The pier shaft is formed with twin legs, which are hollow inside. The pier shafts incorporate permanent prestressing cables and they
25、have a constant wall thickness and a width that varies parabolically over their height. </p><p> Temporary tie-down piers are used to construct the bridge - they are located 35m into each 120m-long side spa
26、n from the main piers. Each consists of an I-shaped shaft, which is tied down to the ground using rock anchors and connected to the box girder by means of prestressing cables. The purpose of these structural elements is
27、to support the cantilever and prevent rotation in strong winds. Once the bridge superstructure is complete and the main pier prestressing is fully tensioned, the temporary</p><p> The location of the bridge
28、, only about 100km south of the Arctic Circle, has meant that special measures have to be introduced to allow construction work to continue all year round. Apart from the obvious need to provide site lighting for much of
29、 the wintertime, the challenge of concreting in temperatures which can be as low as 0 C has to be overcome. Hot concrete is produced for the bridge ?sometimes up to 30 C and the formwork has to be insulated to keep the c
30、oncrete warm. Electric heating cab</p><p> Construction of the new bridge began in January 2000 and is expected to be complete in September this year. The construction of the cantilever started in summer la
31、st year and is due to be finished in April. When Bd&e went to press, the project was on schedule for opening to traffic in late autumn.</p><p> Project Team </p><p> Client: Statens Vegves
32、en</p><p> Contractor: AF Sundoybrua (AS Anlegg, NCC Construction) </p><p> Consultant: Dr Ing Aas-Jakobsen</p><p> Architect: Boarch Arkitekter</p><p> 超輕大跨度橋——Sun
33、doya</p><p> 挪威的在 Sundoya 橋上的主跨有望在復活節(jié)的后第一個星期望合龍. 它是一座大跨度的,在世界的它的同類型中第二長,建造在 situ 的長大橋。 </p><p> Sundoya橋位于挪威的風景最好的區(qū)域之一,距北極圈以南只有100 km. 538 m長的橋跨跨越 Sundet河 ,而且它將會是連結 Sundoya 和大陸的通道. 橋址位于 Mosjoe
34、n城往西35 km, 在 Mosjoen 和 Sandnessjoen 之間的第 78 公路結束. </p><p> 它將會是連結 Alstenoya 到大陸的第二大橋,在Helgeland 橋12 年后建成. 這個區(qū)域對于熟悉橋梁世界紀錄的人并不陌生,當它開通的時候 ,Helgeland 橋的 425 m 長的主跨是世界最長的斜拉橋的,從1992起到現在. </p><p> Su
35、ndoya 橋被區(qū)分為三個跨徑:它有 298 m 的一個主跨和二個120 m 的邊跨. 長的主跨使它成為世界第二跨度的后張預應力連續(xù)箱梁鋼構橋. </p><p> 以它的設計原則,顧問Ing Aas- Jakobsen博士提到它的設計方式是效仿在1998年建成的Raftsundet 橋,到時候它和Sundoya 橋將會幾乎是雙胞胎. 二座橋有同一的主跨, 但是 Raftsundet 有四個跨度而Sundoya
36、's 只有三個. 承包商As Anlegg ,是投資Sundoya 的一個投資方,以前同時也是 Raftsundet 橋的承包商,而且建筑師 Boarch Arkitekter 也同時是此兩橋的建設單位. </p><p> 在 2001 年1月合資公司 AF Sundoybrua 和客戶Statens egvesen 簽訂了建設合同,是 Sundoya 橋的主要投資方. 這一個共同投資由承包商 Rei
37、nertsen Anlegg 和 NCC 建筑所組成。</p><p> 高強混凝土是此橋的設計是主要組成部分,包括正常的重量 HPC 和輕量級 HPC。普通混凝土,在大約 2500 公斤/m3容重 ,用在兩個120 m 邊跨上;高強混凝土,容重在大約 1970 公斤/m3,作為 298 m 主跨的建筑材料. 這使建筑能夠著手進行使用懸臂施工法。</p><p> 從挪威來的本地的巖石
38、被用當做邊跨普通混凝土的集料,但是高強混凝土需要進口石料,挪威本土并沒有. 能被用作歐洲的輕量級高強混凝土集料的是擴大泥土或頁巖,但是這材料有高吸水性。因為這個理由,混凝土不能采用泵送。 </p><p> 為了解決這個難題,承包商采用了在 Raftsundet 橋上用過的相似的解決辦法。采用從美國的南卡羅萊那進口來的 Stalite 集料. Stalite集料通過加熱高容重的石板,使其內部產生膨脹而生成一種輕
39、量級在單位抗壓重非常高的石料。它的低吸收大約 6%和高的粒子力量是兩個允許 Stalite 超過 82.7 MPa的因素。 制造業(yè)者聲稱,它和水泥漿糊的合計束縛和兼容性減少微- 裂痕而且提高耐久性,而且它的低吸收制造混合而且泵送是容易的. </p><p> 依照 AF Sundoybrua 項目經理Eirik Nilsskog 的說法 ,這材料已經給一個非常好的性能. 它容易被注入結構框架,而且表面平整。他說
40、,它能被抽120 m,沿著需要凝結的橋面板位置. 混凝土在距橋只有 1 km的一個可運輸的移動場地生產. 不時的重量監(jiān)控是必需的,以便懸臂施工時能適當的平衡. 這在每次運送前都需要被測試. </p><p> 計劃在 2001 年1月在和彈藥箱的制造廠地Aker Verdal 為碼頭開始. 在2001 年5月二個彈藥箱將被拖放到距橋位置的北方500 km處. </p><p> 建筑在
41、situ的橋梁應用了被 NRS改良過的特別移動的建筑儀器.每 5 m 的橋面板澆筑需要一個星期, Sundoya 橋上一共使用了二個可動裝置. 這些特別的裝置專為As Anlegg生產,其已經在挪威的Kristiansand 的 Varodden 橋上使用,現在他們也已經被相同承包商橋用在Rafsundet 上。當結構的其他部份使用較標準的類型 C65 的時候 , 橋的主跨的中央部份的設計以輕量級具體物 LC60 的使用為基礎。 因為海
42、水的強腐蝕性,混凝土的質量一定需要特別好的. </p><p> 結構是單獨部分,先期預應力的矩形箱形結構,大量的被移動的NRS 的 formwork 系統生產應用。 箱梁寬度是 7 m ,而且它的高度從在跨中的3 m 變化到在碼頭支座上的 14.5 m。和鄰接結構相似,C25 的混凝土塊在箱梁內將會被用作壓載物. 除此之外,設計者已經考慮在箱梁內預留允許添加后預應力鋼絞線的空間。如此長期的行為不被完全知道,因
43、此,主跨在使用期間可能下撓的可能必須被考慮。道路的寬度是從在邊之上的人行橫道到在另一邊的7.5 m ,而且橋的總寬度是10.3 m.包括2 m寬度的人行橫道。 </p><p> 橋梁的上部結構與內空的雙薄壁墩固結在一起. 碼頭橋使用長期預應力鋼絞線,而且他們有固定腹板厚度和高度呈拋物線形變化的箱梁。</p><p> 臨時約束也被應用到此座橋梁上。它們位于以每距主跨中心120米分段區(qū)
44、的前35米處.組成I形的軸,使用巖石錨的固結到地面,而后經由預力鋼絞線連接到箱梁. 這些結構目的在于支援懸桁而且避免在強烈的風作用下扭轉。橋上部構造施工完成而且主要的預應力束被完全張拉后, 臨時約束將會被去除。 橋的位置,距北極圈大約100 km,氣候條件很差,意謂著建筑工作中間必須使用特別的措施. 除了在冬季明顯的需要提供照明之外,同樣地在低達-30攝氏度的低溫中混凝土的凝結也必須被克服. 橋梁建設時現澆混凝土有時達到 30攝氏度而且
45、框架必須被絕緣使混凝土保持溫度。通過電暖氣的電纜在早先施工結束前也被用在混凝土的加溫. </p><p> Sundoya橋在 2000 年1月開始建筑,預期在9月份完工。 懸臂的建筑在去夏天開始和預定在四月完成. 直至 Bd& e發(fā)布消息的時候,計劃是在秋季通車.</p><p> Sundoya橋(挪威)基本資料:</p><p> 客戶: Sta
46、tens Vegvesen</p><p> 承包商: AF Sundoybrua(As Anlegg,NCC 建筑) </p><p> 顧問: Ing Aas-Jakobsen 博士</p><p> 業(yè)主: Boarch Arkitekter </p><p> ——原文摘自《Bridge(design&engineer
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 橋梁設計外文翻譯--超輕大跨度橋
- 橋梁畢業(yè)設計外文翻譯---超輕大跨度橋
- 橋梁畢業(yè)設計外文翻譯--大跨度橋梁
- 橋梁畢業(yè)設計外文翻譯--大跨度橋梁.doc
- 橋梁畢業(yè)設計外文翻譯--大跨度橋梁.doc
- 道橋畢業(yè)設計外文翻譯---鐵路大跨度橋梁設計的爭議
- 道橋畢業(yè)設計外文翻譯---鐵路大跨度橋梁設計的爭議(節(jié)選)
- 道橋畢業(yè)設計外文翻譯---鐵路大跨度橋梁設計的爭議(節(jié)選)
- 道橋畢業(yè)設計外文翻譯---鐵路大跨度橋梁設計的爭議(節(jié)選)
- 大型橋梁及施工外文翻譯--大跨度橋梁
- 道橋畢業(yè)設計外文翻譯---鐵路大跨度橋梁設計的爭議(節(jié)選).docx
- 道橋畢業(yè)設計外文翻譯---鐵路大跨度橋梁設計的爭議(節(jié)選).docx
- 橋梁外文翻譯--大跨度預應力混凝土橋梁結構的豎向撓度預測
- 橋梁外文翻譯--大跨度預應力混凝土橋梁結構的豎向撓度預測
- 橋梁外文翻譯--大跨度預應力混凝土橋梁結構的豎向撓度預測(英文)
- 橋梁外文翻譯--大跨度預應力混凝土橋梁結構的豎向撓度預測(節(jié)選)
- 橋梁外文翻譯--大跨度預應力混凝土橋梁結構的豎向撓度預測(節(jié)選).doc
- 橋梁外文翻譯--大跨度預應力混凝土橋梁結構的豎向撓度預測(節(jié)選).doc
- 橋梁監(jiān)控畢業(yè)論文---大跨度t型鋼構橋橋梁施工監(jiān)控
- 橋梁專業(yè)外文翻譯---長江下游六大橋
評論
0/150
提交評論