畢業(yè)設(shè)計(論文)外文資料翻譯----倒立擺_第1頁
已閱讀1頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p>  畢 業(yè) 設(shè) 計(論 文)外 文 參 考 資 料 及 譯 文</p><p>  譯文題目: Inverted Pendulum</p><p>  學(xué)生姓名: 學(xué) 號: </p><p>  專 業(yè): 07自動化

2、 </p><p>  所在學(xué)院: </p><p>  指導(dǎo)教師: </p><p>  職 稱: </p><p&

3、gt;  2011 年 2月 24日</p><p><b>  \</b></p><p>  The inverted pendulum</p><p>  Key words: inverted pendulum, modeling, PID controllers,</p><p>

4、  LQRcontrollers</p><p>  What is an Inverted Pendulum? Remember when you were a child and you tried to balance a  broom-

5、stick or baseball bat on your index finger or the palm of your hand? You had to constantly adjust the position of&#

6、160;your hand to keep the object upright. An Inverted Pendulum does basically the same thing. However, it is limited in 

7、that it only moves in one dimension, while your hand could move up, down, sideways, etc. Check out the video provided

8、60;to see exactly how the Inverted Pendulum works. </p><p>  An inverted pendulum is a physical device consisting in a cy

9、lindrical bar (usually of aluminum) free to oscillate around a fixed pivot. The pivot is mounted on a carriage, which in

10、 its turn can move on a horizontal direction. The carriage is driven by a motor, which can exert on it a varia

11、ble force. The bar would naturally tend to fall down from the top vertical position, which is a position of unsteady

12、0;equilibrium.  </p><p>  The goal of the experiment is to stabilize the pendulum (bar) on the top vertical position. This

13、 is possible by exerting on the carriage through the motor a force which tends to contrast the 'free' pendulum d

14、ynamics. The correct force has to be calculated measuring the instant values of the horizontal position and the pendulum angl

15、e (obtained e.g. through two potentiometers).  </p><p>  The system pendulum+cart+motor can be modeled as a linear system if

16、60;all the parameters are known (masses, lengths, etc.), in order to find a controller to stabilize it. If not all the&#

17、160;parameters are known, one can however try to 'reconstruct' the system parameters using measured data on the dynamics o

18、f the pendulum.  </p><p>  The inverted pendulum is a traditional example (neither difficult nor trivial) of a controlled 

19、system. Thus it is used in simulations and experiments to show the performance of different controllers (e.g. PID controllers,

20、0;state space controllers, fuzzy controllers....).  </p><p>  The Real-Time Inverted Pendulum is used as a benchmark, to test t

21、he validity and the performance of the software underlying the state-space controller algorithm, i.e. the used operating system. A

22、ctually the algorithm is implement form the numerical point of view as a set of mutually co-operating tasks, which are p

23、eriodically activated by the kernel, and which perform different calculations. The way how these tasks are activated (e.g. the

24、0;activation order) is called scheduling of the tasks. It is</p><p>  Modeling an inverted pendulum.Generally the inverted pendulum&

25、#160;system is modeled as a linear system, and hence the modeling is valid only for small oscillations of the pendulum. 

26、 </p><p>  With the use of trapezoidal input membership functions and appropriate composition and inference methods, it will be

27、 shown that it is possible to obtain rule membership functions which are region-wise affine functions of the controller input

28、 variable. We propose a linear defuzzification algorithm that keeps this region-wise affine structure and yields a piece-wise affi

29、ne controller. A particular and systematic parameter tuning method will be given which allows turning this controller into a 

30、vari</p><p>  We will begin with system design; analyzing control behavior of a two-stage inverted pendulum. We will then 

31、show how to design a fuzzy controller for the system. We will describe a control curve and how it differs from that

32、 of conventional controllers when using a fuzzy controller. Finally, we will discuss how to use this curve to define lab

33、els and membership functions for variables, as well as how to create rules for the controller.  </p><p>  In the form

34、ulation of any control problem there will typically be discrepancies between  the actual plant and the mathematical model dev

35、eloped for controller design.This mismatch may  be due to unmodelled dynamics, variation in system parameters or the approximation

36、 of complex  plant behavior by a straightforward model.The engineer must ensure that the resulting  controller has the a

37、bility to produce the required performance levels in practice despite such  plant/model mismatches. This has led t</p><p>

38、  The Inverted Pendulum is one of the most important classical problems of Control Engineering.Broom Balancing (Inverted Pendulum on

39、60;a cart) is a well known example of  nonlinear, unstable control problem. This problem becomes further complicated when a&#

40、160;flexible broom, in place of a rigid broom, is employed. Degree of complexity and difficulty in its control increases with

41、 its flexibility.  This problem has been a research interest of control engineers.  </p><p>  Control of Inverted Pendulum

42、  is a  Control Engineering project based on  the FLIGHT  SIMULATION OF ROCKET OR MISSILE DURING THE INITIAL S

43、TAGES OF FLIGHT. The AIM OF THIS STUDY is to stabilize the Inverted Pendulum such that the position of the carriage 

44、;on the track is controlled quickly and accurately so that the pendulum is always erected in its inverted position during

45、0;such movements.  </p><p>  This practical exercise is a presentation of the analysis and practical implementation of the resu

46、lts of the solutions presented in the papers, “Robust Controller for Nonlinear & Unstable System: Inverted Pendulum” and “Flex

47、ible Broom Balancing” , in which this complex   problem was  analyzed  and a simple  yet  effective solution&#

48、160;was presented.</p><p>  Prescribed trajectory tracking with certain accuracy is a main task of robotic control. The control 

49、;is often based on a mathematical model of the system. This model is never an exact representation of reality, since mod

50、eling errors are inevitable. Moreover, one can use a simplified model on purpose. In this paper, the structured and unstructu

51、red uncertainties are of primary interest, i.e., the modeling error due to the parameters variation and unmodeled modes, especiall

52、y the friction and sensor </p><p>  The erroneous model and the demand for high performance require the controller to 

53、;be robust.  The sliding mode controllers(SMC) based on variable structure control can be used if the  inaccuracies in t

54、he model structure are bounded with known bounds. However, an SMC has some disadvantages, related to chattering of the contro

55、l input signal. Often this phenomenon is undesirable, since it causes excessive control action leading to increase wear of th

56、e actuators and to excitation of unmodeled dynami</p><p>  The attempts to attenuate this undesirable effect result in the 

57、;deterioration of the robustness characteristics. This is a well-known problem and widely treated in the literature.  In order

58、0;to obtain smoothing in the bang-bang typed discontinuities of the sliding mode controller different schemes have been suggested. 

59、;</p><p>  Another important issue limiting the practical applicability of SMC is the over conservative control law due to 

60、;the upper bounds of the uncertainties. In practice most often the worst case implemented in control law does not take p

61、lace and the resulting large control inputs become unnecessary and uneconomical. </p><p>  In this paper we suggest an app

62、roach to the design of decentralized motion controllers for electromechanical systems besides the sliding mode motion controller struct

63、ure and disturbance torque estimation. The accuracy of the estimation is the critical parameter for robustness in this scheme,

64、0;as opposed to the upper bounds of the perturbations themselves. Consequently, the driving terms of the error dynamics are r

65、educed from the uncertainties (as in the conventional SMC) to the accuracy in their </p><p>  Experimental robustness propertie

66、s of fuzzy controllers remain theoretically difficult to prove and their synthesis is still an open problem. The non-linear s

67、tructure of the final controller is derived from all controllers at the different stages of fuzzy control, particularly from 

68、common defuzzification methods (such as Centre of Area). In general, fuzzy controllers have a region-wise structure given the part

69、ition of its input space by the fuzzification stage. Local controls designed in these r</p><p>  We will begin with s

70、ystem design; analyzing control behavior of a two-stage inverted pendulum. We will then show how to design a fuzzy controller

71、 for the system. We will describe a control curve and how it differs from that of conventional controllers when using

72、60;a fuzzy controller. Finally, we will discuss how to use this curve to define labels and membership functions for variables

73、, as well as how to create rules for the controller. </p><p>  In the formulation of any control problem there w

74、ill typically be discrepancies between  the actual plant and the mathematical model developed for controller design.This mismatch 

75、may  be due to unmodelled dynamics, variation in system parameters or the approximation of complex  plant behavior by a&

76、#160;straightforward model.The engineer must ensure that the resulting  controller has the ability to produce the required performance&

77、#160;levels in practice despite such  plant/model mismatches. This has led t</p><p>  Sliding mode control is a particular 

78、;type of Variable Structure Control System (VSCS). A  VSCS is characterized by a suite of feedback control laws and a

79、60;decision rule. The decision rule, termed the switching function, has as its input some measure of the current system behav

80、ior and produces as an output the particular feedback controller which should be used at that instant in time. A variabl

81、e structure system,which may be regarded as a combination of  subsystems where each subsystem has a fixe</p><p>  In 

82、sliding mode control, the VSCS is designed to drive and then constrain the system state to lie within a neighborhood of&

83、#160;the switching function. There are two main advantages to this approach. Firstly, the dynamic behavior of the system may 

84、be tailored by the particular choice of switching function. Secondly, the closed-loop response becomes totally insensitive to a pa

85、rticular class of uncertainty. The latter invariance property clearly makes the methodology an appropriate candidate for robust</p>&

86、lt;p>  The sliding mode design approach consists of two components. The first involves the design of a switching function so

87、60;that the sliding motion satisfies design specifications. The second is concerned with the selection of a control law which 

88、;will make the switching function attractive to the system state. Note that this control law is not necessarily discontinuous.<

89、/p><p>  We will provide the reader with a thorough grounding in the sliding mode control area and as such is appro

90、priate for the graduate with a basic knowledge of classical control theory and some knowledge of state-space methods. From th

91、is basis, more advanced theoretical results are developed. Resulting design procedures are emphasized using Matlab files. Fully worked&

92、#160;design examples are an additional tutorial feature. Industrial case studies, which present the results of sliding mode controller&

93、#160;impl</p><p><b>  倒立擺</b></p><p>  關(guān)鍵詞:倒立擺,模型,PID控制,LQR控制</p><p>  倒立擺是什么?還記得當(dāng)你是個孩子時你曾用你的食指或者掌心設(shè)法去平衡一把掃帚柄或者棒球棍嗎?你必須不斷地調(diào)整你 的手的位置以保持對象的垂直。一個倒立擺在本質(zhì)上就是做相同的事情。然而,它會受

94、限制因為它只能在一 定范圍內(nèi)移動,雖然你的手可以上升、下降、斜向一邊等等。檢查錄象提供的畫面來觀察倒立擺是如何確切 地工作的。</p><p>  一個倒立擺是個物理設(shè)備它包括一個圓柱體的棒子(通常是鋁的)可以在一個支點周圍振蕩。這個支點是安在一個車架上,它的轉(zhuǎn)動方向是水平的偏轉(zhuǎn)。小車是由一個馬達(dá)控制的,它可以運用于一個變力。棒子會有自然的趨勢從最高的豎直位置下落,那是一個不穩(wěn)定的平衡位置。&

95、lt;/p><p>  實驗的目標(biāo)是使擺(棒子)穩(wěn)定在最高的豎直位置。這是有可能的只要運用通過馬達(dá)的小車一個力該力可以與“自由”擺的動力學(xué)抵消。這個正確的力必須通過計算測量水平偏轉(zhuǎn)的瞬時值和擺的角度(獲得兩個電位計)。</p><p>  倒立擺是干什么的?就好象掃帚柄,一個倒立擺是一個天生的不穩(wěn)定系統(tǒng)。力度必須被嚴(yán)格地應(yīng)用以保持系統(tǒng)的完整性。為了實現(xiàn)它,嚴(yán)格的控制理論是必須的。倒立擺在求數(shù)值

96、和各種控制理論的比較中是必要的。</p><p>  倒立擺是一個控制器系統(tǒng)中的一個傳統(tǒng)的例子(既不困難也不是沒有價值)。盡管它是仿真和實驗來顯示不同控制器的性能(舉例來說PID控制器,狀態(tài)空間控制器,模糊控制器)。</p><p>  實時倒立擺被作為一個基準(zhǔn),去測試軟件在狀態(tài)空間控制器運算法則下的有效性和性能,也就是實用的操作系統(tǒng)。事實上運算法則是通過數(shù)值點實現(xiàn)的該數(shù)值點看作一組互助的

97、協(xié)同操作的任務(wù),它是周期性的通過核心的活動,它執(zhí)行不同的計算。這些任務(wù)如何活動的方法(舉例來說激活命令)被稱作任務(wù)的時序安排。很明顯每個任務(wù)的時序安排對控制器的一個好的性能是至關(guān)緊要的,因此對一個擺的穩(wěn)定性是有效的。如此倒立擺是非常有用的在決定是否一個特殊的時序安排的選擇比另一個好,在哪個情形下,在什么程度內(nèi)等等。</p><p>  為倒立擺建模。通常倒立擺系統(tǒng)建模成一個線形系統(tǒng),因此模型只對小幅度擺動的擺才有

98、效。 </p><p>  通過梯形輸入隸屬函數(shù)的使用和適當(dāng)?shù)淖鲌D法和推論方法,這將說明那是有可能遵循規(guī)則區(qū)域勸導(dǎo)的輸 入變量仿射函數(shù)的隸屬函數(shù)。我們提出線形逆模糊化算法它能這個區(qū)域勸導(dǎo)仿射結(jié)構(gòu)和產(chǎn)生一個塊仿射控制 器。一個特殊的系統(tǒng)的參數(shù)調(diào)節(jié)方法將會被給定它允許把這個控制器調(diào)節(jié)成一個可變的結(jié)構(gòu)相似的控制器。 我們將比較這個區(qū)域勸導(dǎo)仿射控制器和一個模糊的可變結(jié)構(gòu)的控制器通過應(yīng)用一個倒

99、立擺控制。 </p><p>  我們將從系統(tǒng)設(shè)計開始;分析二級倒立擺的控制行為。隨后我們將展示如何為系統(tǒng)設(shè)計一個模糊控制裝 置。我們將描繪一個控制曲線當(dāng)使用模糊控制裝置時它與一個常規(guī)控制器是如何的不同。最后,我們將討論 如何使用這個曲線去定義標(biāo)志還有變量的隸屬函數(shù),還有就是如何為控制器創(chuàng)立一套規(guī)則。</p><p>  “倒立擺、分析、設(shè)計和執(zhí)行”是由一個MATLAB

100、方程和內(nèi)容的收藏的,還有SIMULINK模型,對分析倒立 擺系統(tǒng)和設(shè)計控制系統(tǒng)是很有用的。這個報道MATLAB文件收藏是由少量的控制系統(tǒng)分析的實際任務(wù)而發(fā)展的,設(shè)計和發(fā)展實際問題。這分派 的倒立擺的問題是一個控制系統(tǒng)的實驗室工作的一部分。</p><p>  倒立擺是最重要最經(jīng)典的控制工程問題中的一個。帚平衡(車載的倒立擺)是一個著名的非線形例子, 不穩(wěn)定的控制問題。這個問題越來越復(fù)

101、雜當(dāng)一個柔韌的帚代替一個剛硬的帚被使用。復(fù)雜的問題的真實度和 難度在控制中隨著彈性而增長。這個問題已經(jīng)引起調(diào)度工程師的興趣并展開研究。</p><p>  倒立擺的控制是一個控制工程的方案基于火箭的飛行模擬或者導(dǎo)彈飛行的初始狀態(tài)。這個學(xué)習(xí)的目的是 穩(wěn)定倒立擺這樣小車的位置在軌道上被控制得快速和準(zhǔn)確以使擺在這一裝置下始終垂直在它的倒立位置。</p><p>  這個實際的

102、運動是一個分析的表現(xiàn)還有實際的執(zhí)行在解決問題的結(jié)果中在本文中,“非線形和不穩(wěn)定系 統(tǒng)的堅固的控制器:倒立擺”和“柔韌的帚平衡”,其中這個復(fù)雜問題分析和一個簡單的有效的解決方案被引出</p><p>  法定軌道通過確定的精確性是機器控制的一個主要任務(wù)??刂仆ǔJ腔谝粋€系統(tǒng)的數(shù)學(xué)模型。模型不是一 個準(zhǔn)確的實體表現(xiàn),模型的誤差是不可避免的。此外,我們可以特意使用一個簡化的模型。在這篇論文中,&#

103、160;構(gòu)造好的和未構(gòu)造好的不確定因素是主要的興趣所在,也就是說模型的誤差導(dǎo)致參數(shù)變化和未模型化的模式 ,尤其是摩擦力和敏感元件的力度,被忽視的時間延遲等等。</p><p>  不正確的模型和高性能的需求要求控制器非常堅固?;?刂破?SMC)是基于變結(jié)構(gòu)控制使用的如果模型結(jié)構(gòu)中的錯誤在已知的范圍內(nèi)躍進(jìn)。然而,一個SMC有一些缺點,涉及控制輸入信號的振動。通常這個現(xiàn)象是令人不快的,它會引起額外的控制作

104、用從而導(dǎo)致激勵者穿戴的增加和未建模動力學(xué)的刺激。 </p><p>  削弱這個令人不快的效果的嘗試導(dǎo)致堅固的特性的變化。這是一個眾所周知的難題并且廣泛的在文獻(xiàn)中經(jīng)過處理。為了在繼電器控制中獲得濾波中斷滑??刂破鞯姆桨敢呀?jīng)被提出了。</p><p>  另外一個重要的論點限定了SMC的實際應(yīng)用性就是創(chuàng)新的控制定律導(dǎo)致上面的不確定因素的范圍。在實踐中通常大部分最差的案例在控制定律下執(zhí)行確沒有

105、發(fā)生并且作為結(jié)果的大的控制輸入變得不必要和不經(jīng)濟的。</p><p>  在這篇論文中我們提出一個機電系統(tǒng)中分散震動控制器的設(shè)計方法除了滑模震動控制器結(jié)構(gòu)和干擾轉(zhuǎn)矩的估算。估算的精確性是這個計劃中最中堅的評定參數(shù),與上面的不確定的范圍正好相反。因此,在評估的精確 性中控制一些誤差動力學(xué)的條件減少了一些不確定性(就如同在傳統(tǒng)的SMC中)。結(jié)果在沒有超越傳統(tǒng)的控 制中是一個較好的跟蹤精度。 <

106、;/p><p>  模糊控制裝置的實驗的健全的性質(zhì)難以用理論去證明它們的綜合仍然是一個未解決的問題。最終控制器的非線性性質(zhì)來源于各級模糊控制的控制器,顯著地逆模糊化方法(諸如中心區(qū))。通常,模糊控制器有一個區(qū)域勸導(dǎo)的性質(zhì)是模糊化級數(shù)給的輸入空間。本地控制設(shè)計這些區(qū)域結(jié)合成集使最終的全球控制實現(xiàn)。一個級 數(shù)空間的分割可以在控制器有區(qū)域勸導(dǎo)的常數(shù)參數(shù)中找到。此外,每個模糊控制器調(diào)整參數(shù)(即形狀以及輸 

107、入輸出的變量的值的隸屬函數(shù))會在同一時間在某些區(qū)域影響參數(shù)的值。在特殊情況下開關(guān)線將相平面分成 一個區(qū)域那個區(qū)域中控制是正的反之另一邊是負(fù)的,模糊控制器可以視為一個可變結(jié)構(gòu)的控制器。這類的模 糊控制器可以吸收到可變結(jié)構(gòu)控制器邊界層,其中穩(wěn)定性定理存在,而是一個非線形開關(guān)面。 </p><p><b>  。 </b></p><p>  我們將從系

108、統(tǒng)設(shè)計開始;分析二級倒立擺的控制行為。隨后我們將展示如何為系統(tǒng)設(shè)計一個模糊控制裝 置。我們將描繪一個控制曲線當(dāng)使用模糊控制裝置時它與一個常規(guī)控制器是如何的不同。最后,我們將討論 如何使用這個曲線去定義標(biāo)志還有變量的隸屬函數(shù),還有就是如何為控制器創(chuàng)立一套規(guī)則。 </p><p>  在任何控制問題的陳述中,在控制的設(shè)計發(fā)展中現(xiàn)行的設(shè)備和數(shù)學(xué)模型之間總是有著明顯的差異。這種 失諧也許應(yīng)歸

109、于非建模動力學(xué)中,通過一個簡潔的模型系統(tǒng)參數(shù)或者復(fù)雜設(shè)備的近似值會發(fā)生變化。工程師 必須確定作為結(jié)果的控制器在實際中有能力制造必須的性能指標(biāo)不管是設(shè)備還是模型的失諧。這已經(jīng)導(dǎo)致了 在所謂堅固的操縱方法的發(fā)展產(chǎn)生一個強烈的興趣此方法能設(shè)法解決這個問題。堅固的操縱控制器設(shè)計的一 個特殊的方法就是所謂的滑??刂品椒ā?lt;/p><p>  滑??刂剖强勺兘Y(jié)構(gòu)控制系統(tǒng)(VSCS)的一個特殊的類

110、型。一個VSCS是由一套反饋控制定律和一個決策規(guī)則表現(xiàn)出來的。決策規(guī)則,條件是開關(guān)方程,將輸入估計成正確的系統(tǒng)特性并且產(chǎn)生一個輸出精確的反饋控制器使之可以及 時地被使用。一個可變結(jié)構(gòu)系統(tǒng),被認(rèn)為是各子系統(tǒng)的結(jié)合其中每個子系統(tǒng)有一個確定的控制結(jié)構(gòu)并且結(jié)果是對系統(tǒng)結(jié)構(gòu) 給定的區(qū)域是適用的。介紹這個額外的系統(tǒng)的復(fù)雜性的優(yōu)勢之一就是可以將系統(tǒng)中復(fù)合結(jié)構(gòu)的有用的性質(zhì)組合起來。此外,該系統(tǒng)可能被設(shè)計成擁有新的性質(zhì)而且不是單獨地應(yīng)

111、用與復(fù)合結(jié)構(gòu)的某一方面。 前蘇聯(lián)在20世紀(jì)50年代末最先開始利用這些自然的想法。 </p><p>  在滑模控制中,VSCS被設(shè)計成操作并強迫系統(tǒng)狀態(tài)位于鄰近的開關(guān)方程中。這種方法有兩個主要的優(yōu)點:第一,系統(tǒng)的動態(tài)性能適應(yīng)于開關(guān)方程的特殊選擇;第二,閉環(huán)響應(yīng)完全不受不確定的特殊種類的影響。后面的恒定性質(zhì)明顯地使方法論在堅固的操縱方法中有一個適當(dāng)?shù)暮钸x對象。另外,立即指定性能的能力使得滑??刂茝脑O(shè)計觀點看變得有價

112、值。 </p><p>  滑模設(shè)計處理兩種結(jié)構(gòu)組成。第一個包括開關(guān)方程的設(shè)計所以滑行的動作滿足設(shè)計規(guī)范。第二個涉及到 控制規(guī)則的選擇該規(guī)則將使開關(guān)方程在系統(tǒng)狀態(tài)中變得有價值。注意這個控制規(guī)則并不是必然不連續(xù)的。 </p><p>  我們將提供讀者一個徹底的滑模控制領(lǐng)域的基礎(chǔ)并且適合大學(xué)生使用的經(jīng)典控制理論和一寫狀態(tài)空間方 法的知識的基礎(chǔ)知識。從這些基礎(chǔ)中,許多先進(jìn)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論