電站鍋爐外文翻譯---改進煤粉鍋爐的燃燒和傳熱_第1頁
已閱讀1頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、<p><b>  附表A 英文文獻</b></p><p>  Coal Flow Measurement and Flow Balancingfor Improving Combustion and Emissions on Coal Fired Boilers</p><p>  S. Laux, J. Grusha</p><p

2、>  Foster Wheeler Energy Corporation</p><p>  Clinton, NJ 08809-4000, USA</p><p>  Stefan_Laux@fwc.com</p><p><b>  T. Rosin</b></p><p>  TR-Tech Int. Oy&

3、lt;/p><p>  FIN-20100 Turku, Finland</p><p>  TR@trtech.com</p><p><b>  Abstract </b></p><p>  The performance of pulverized coal combustion systems commonly s

4、uffers from air and fuel imbalances at the burners. Stoichiometries local to the burners must be maintained in order to achieve ultra low NOx performance without significantly sacrificing combustion efficiency. In additi

5、on to the emission benefits, improvement of the air and fuel balance results in less slagging and reduced furnace wall corrosion. </p><p>  He paper presents results and benefits associated with operating co

6、al fired boilers using Foster Wheeler and TR-Tech’s Electric Charge Transfer (ECT) coal flow measurement technology. ECT systems provide boiler operators with continuous on-line indication of coal flow distribution, cond

7、uit velocity and particle fineness. The paper will show devices that control the coal flow balance. ECT technology in conjunction with Foster Wheeler’s solutions for coal flow balancing is opening up an entire new</p&

8、gt;<p>  Ultra Low NOx Combustion </p><p>  New NOx regulations demand drastically reduced NOx emissions from fossil fired boilers. With a few exceptions, the NOx limits for ozone control during the s

9、ummer months require a post-combustion control method such as SCR on coal fired boilers, because Low NOx firing systems alone can not achieve compliance. However, investment costs and ammonia costs of an SCR DeNOx cataly

10、st can be reduced, if the output NOx from the firing system is low. Thus, more stringent emission limits and the addition of</p><p>  Regardless of the NOx reduction approach, many current low NOx systems ar

11、e limited in their ability to provide significant additional reductions in NOx. New multi air zone burner designs, special coal nozzle tips, etc don’t provide the reductions being sought by utilities wanting to minimize

12、or eliminate post combustion systems.</p><p>  In anticipation of these requirements, Foster Wheeler has been developing new technologies to go beyond just “burner components”. Our evaluation of operating LN

13、B systems shows that many are limited from further NOx reduction by “non burner“ barriers. By addressing and eliminating each of these, significant reductions are possible. </p><p>  One of the most common

14、barriers to lower NOx is related to poor coal and air distribution. These can include high unburned carbon, high CO, furnace slagging, oxygen and/or steam temperature imbalance, corrosion, etc. </p><p>  A

15、ll low NOx firing systems depend on a defined balance of the air and coal at the burners. By monitoring and controlling the air and coal flow to the burners, existing as well as new systems greatly benefit from lower emi

16、ssions and improved boiler operation. Or, if you use the following analogy for boiler emission improvement: This trend is comparable to the change from carburetors to fuel injection systems seen over time in the car indu

17、stry. Foster Wheeler strongly believes that future ultra lo</p><p>  Many pulverized coal boilers experience some of the problems associated with poor air and fuel distribution:</p><p>  * Poor

18、emission performance </p><p>  * Increased ammonia consumption of SCR and SNCR systems </p><p>  * Increased unburned carbon in the fly ash </p><p>  * Distorted oxygen profile at b

19、oiler outlet </p><p>  * Uneven steam temperature profiles </p><p>  * Flame impingement </p><p>  * Increased slagging </p><p>  * Water wall wastage</p><p&

20、gt;  Any deviation from the design air/fuel balance at individual burners result in some burners operating at a fuel lean or a fuel rich condition. The fuel rich burners are producing large amounts of CO, high LOI and lo

21、nger flames while locally lowering the oxygen level in the flue gas. On the other hand, the fuel lean burners produce high NOx levels at elevated O2. The outcome at the boiler exit is a flue gas with high CO and high NOx

22、. In addition, LOI is elevated due to the burners operating at lo</p><p>  Most Low NOx Burners and all Tangential Firing Systems allow air flow control at the burners. These are adjusted mainly during initi

23、al optimization of the Low NOx system after a retrofit. Usually, it was not necessary to address distribution changes with load and degradation of system performance with time. In the recent past, several vendors develop

24、ed control strategies and software to improve boiler and emission performance. While this is the step needed for improvement, most of the systems la</p><p>  ECT Coal Flow Measurement</p><p>  F

25、or continuous boiler optimization, an on-line measurement of the fuel flow in each conduit is required for on-line optimization of the air and coal balance at each burner. This technology is one of the vital steps toward

26、s an Ultra-Low NOx Firing System. </p><p>  Foster Wheeler is partnering with TR-Tech International Oy of Finland to market the Electric Charge Transfer technology (ECT) worldwide. Foster Wheeler is the glob

27、al distributor of the ECT system. The patented technology measures the electric charges present in any two-phase flow transport and uses the signals to determine the following characteristics of the flow. </p><

28、;p>  * ECT measures the relative coal distribution between the conduits. In addition, the system can be configured to measure the flow velocity and the absolute flow in each conduit. Coal flow balance is the key measu

29、rement for continuous Ultra Low NOx combustion. </p><p>  * The high data collection rate of the ECT system allows monitoring also unsteady phenomena in coal conduits that can cause problems during plant ope

30、ration. The signals can be used to detect coal conduit layout due to insufficient primary airflow from the mill and coal conduit surging which results in furnace pressure and emissions fluctuations /2, 3/. </p>&l

31、t;p>  * Finally, the ECT system can be applied to monitor the particle size changes of the coal flow. </p><p>  The antennas and the hardware used for this system are the same as in the coal flow distribu

32、tion application. Thus, the ECT system can be used to monitor mill performance on-line assuring proper coal fineness is maintained to minimize unburned carbon. The configuration of the system is described in more detail

33、in /4/. </p><p>  The ECT system consists of receiving antennas in each coal conduit that are connected to a signal conditioning unit housed in a cabinet. The signals from these conditioning unit is received

34、 by personal computers that are used for data processing and analysis. TR-Tech’s proprietary software is used to determine the balance between the conduits of one mill, to display the results to the operator and to feed

35、the data via a network to the plant’s DCS system or a continuos combustion optimization sof</p><p>  The antennas are easily installed through the horizontal or vertical wall of the existing conduit and inse

36、rted into the coal stream. Three antennas in each conduit are needed for coal flow balance measurement and six for coal flow and velocity measurement. Their location in the pipe wall is determined so that the effects of

37、coal ropes on the measurement results are minimized. Antennas are made of tungsten carbide to ensure long operating life. The installation is very simple and requires only a </p><p>  The ECT system offers s

38、everal distinct advantages: </p><p>  * All information is continuous and on-line. </p><p>  * The ECT measurement is not effected by coal type, moisture, ash content or coal roping. </p>

39、<p>  * The electronics can be located up to 1200 feet from the conduits. No cabinets are needed on the burner decks. </p><p>  * The abrasion resistant antennas in the coal conduit are passive and nee

40、d no power supply. </p><p>  * The installation is easy. The antennas can be installed during short mill outages. </p><p>  ECT systems have been successfully installed on industrial plants and

41、many utility steam generators. In general, the results of the ECT method compare very well with a standard ASME probe test even at extreme shifts of the coal flow between the conduits. This confirms the viability of the

42、technology for real-time coal balancing applications. Since 1998 ECT was installed at nine utility power plants and five installations are scheduled for 2001.</p><p>  Distributors </p><p>  In

43、many tangentially fired plants riffle boxes are installed after an exhauster to distribute the fuel. These designs can be retrofitted with adjustable riffle boxes to achieve improved fuel distribution. Adjustable riffle

44、boxes (Figure 5) allow biasing the particle flow towards individual conduits. The design is similar to the fixed rifflers, but adjustable vanes are used at the riffler inlet. The change of a fuel system without distribut

45、ors to this design requires additional space above the pu</p><p>  The Foster Wheeler Three-Way Distributor is shown in Figure 6 on top of a heart-shaped classifier. The single outlet of the mill is distribu

46、ted in a vertical pipe to three outlets. Distribution fingers that can be pushed into the flow bias the flow from the central inlet pipe at the bottom to the three outlet flanges. This device has been used in several bal

47、l mill installations. ECT is used with the three-way distributor at Logan Station to provide the fuel flow balance information for an optimu</p><p>  Classifiers with Integrated Distribution Vanes </p>

48、<p>  Dynamic classifiers offer not only improved particle fineness but have also by design a much better conduit to conduit balance. As part of a major boiler improvement a retrofit with dynamic classifiers might

49、 be economical. Design features include distribution vanes at the classifier outlet to direct the particle flow towards specific conduits. These vanes can be equipped with an actuator for on-line fuel flow control to the

50、 burners. </p><p>  The distribution from a static classifier can be influenced in a similar fashion. The classifier outlet is retrofitted with adjustable vanes that bias the particle flow between the outlet

51、 ducts. This solution is superior to devices that simply change the pressure drop of the total flow in the conduit (orifices, dampers, etc), because the coal distribution is largely determined before the particles have e

52、ntered the conduits to the burner. The well-defined flow field in the classifier outlet plenu</p><p>  Recent development work at Foster Wheeler has produced a fuel flow biasing solution for Foster Wheeler b

53、all mills equipped with a heart shaped classifier and two outlets per mill end. These ball mills can be equipped with a distribution vane internal to the classifier housing to modify the balance between the two outlets.

54、The end-to-end balance can then be influenced with a feeder bias. </p><p>  Conclusions </p><p>  Well balanced air and fuel flow at the burner is needed to get the highest performance from exis

55、ting or new Low NOx firing systems. Future Ultra Low NOx firing systems will integrate air and fuel measurement and continuously optimize the distribution at the burners. These system will be automated and constantly mon

56、itor and adjust the stoichiometry at the burners. </p><p>  The ECT electrostatic coal flow measurement system offers a high degree of flexibility to be configured in many ways for various measurement tasks:

57、 TR-Tech and Foster Wheeler Energy Corporation are continuing to develop and market the ECT system. Relative coal flow balance, unsteady flow phenomena, changes in coal particle sizes, coal conduit velocities, and absolu

58、te mass flow have been successfully demonstrated. The multitude of signals can be used as adetection tool to for optimization and tro</p><p>  * NOx and CO reduction with balanced burners </p><p&g

59、t;  * Lower SCR ammonia spray rates with subsequent improvements of air heater plugging tendency, washing cycles and reduced slip rates </p><p>  * Unburned carbon level reduction, increased boiler efficienc

60、y </p><p>  * Reduced standard deviation of fly ash unburned carbon, more consistent fly ash for sale </p><p>  * Even boiler oxygen profile, potential to reduce excess air level </p><

61、;p>  * Potential for reduced furnace and heating surface slagging </p><p>  * More even steam temperature profiles </p><p>  * Reduced water wall corrosion as a result of specific air or fuel

62、 biasing near the side walls </p><p>  * Reduced firing system tuning time due to knowledgeable approach </p><p>  * Mill performance monitoring for LOI minimization by measuring fuel fineness o

63、n-line </p><p>  * Quick identification of mill problems (surging, layout) </p><p>  * Reduced auxiliary power and increased fineness by mill primary air optimization </p><p>  * Po

64、tential to detect coal layout early, before damage to piping, burners or windbox occurs</p><p>  References </p><p>  1 Coal and Air Flow Measurement for Reduced NOx and UBC – S. Laux, J. Grush

65、a, and K. McCarthy, presented at EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium, Atlanta, GA., August16-20, 1999 </p><p>  2 Recent Trends in Pulverized Coal Firing Technology, S. Laux, J. Gr

66、usha, and J. Utt, presented at Generating Plant Efficiency & Process Improvement, Denver, CO, July 20 – 21, 2000. </p><p>  3 Benefits and Operating Experience with ECT On-line Coal Flow Measurement Tech

67、nology, Update 2000, S. Laux, J. Grusha, and T. Rosin, presented at Power-Gen 2000, Orlando, FL, November14 – 16, 2000. </p><p>  4 Real Time Coal Flow and Particle Size Measurement for Improved Boiler Opera

68、tion, S. Laux, J. Grusha, K. McCarthy, and T. Rosin, presented at Power-Gen 1999, New Orleans, LA, November 30 – December 1, 1999. </p><p>  5 ECT On-line Coal Flow Measurement Technology – Benefits and Expe

69、rience from Three Years of Operation – J. Kersch, S. Laux, J. Grusha, and T. Rosin, presented at EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium, Chicago, IL, August 20-24, 2001 </p><p><b&g

70、t;  附表B 英文翻譯</b></p><p>  用煤粉流量計測量法和流程配平法來</p><p>  改進煤粉鍋爐的燃燒和傳熱</p><p>  作者:S. Laux, J. Grusha[1]、T. Rosin [2]</p><p>  [1]: 福斯特惠勒能源公司</p><p>  克林頓

71、街,新澤西08809-4000,美國</p><p>  [2]: 土耳其工學院國際研究所.</p><p>  FIN-20100 土爾庫, 芬蘭</p><p><b>  摘要</b></p><p>  煤粉鍋爐的性能經(jīng)常受到空氣和燃料的不均衡的影響。鍋爐的化學計量法是指能夠維持在燃料不足的狀態(tài)下產(chǎn)生最少量的No

72、x。另外為了提高傳熱的效能,保持空氣和燃料的均衡,從而減少殘渣和減輕爐壁腐蝕。</p><p>  本文報道運用福斯特惠勒能源公司和土耳其工學院國際研究所研制的煤粉流量計測量法來提高煤粉鍋爐的結(jié)果和效能。ECT體系提供了鍋爐連續(xù)運行的的煤粉流程分布,在管道中的速度和微粒性能的狀態(tài)。文章講述了控制煤粉均衡流程的裝置。結(jié)合福斯特惠勒提供的煤粉均衡流程的方法,ECT科技正在開發(fā)一個用來估計運行成本和改進傳熱控制的完整裝

73、置。</p><p><b>  極其低的Nox燃燒</b></p><p>  新的Nox規(guī)則要求徹底減少舊鍋爐中Nox的散發(fā)。少數(shù)例外,在夏季控制臭氧的Nox需要一個加速燃燒控制方法,例如應用在煤燃燒的鍋爐的SCR,因為一個單獨的微Nox燃燒系統(tǒng)無法達到要求。然而,如果從燃燒系統(tǒng)中釋放出的Nox的量是低的話,SCR的NOx催化劑的投資成本和氨水成本就能夠減少。因此

74、,更加嚴格的排放限度和快速燃燒Nox控制的增加物引起了從現(xiàn)有的低的Nox煤燃燒系統(tǒng)中散發(fā)出的Nox的改進的需要。</p><p>  不管Nox的減少方法,目前許多低Nox體系被它們自身提供重要的、額外的減少Nox的能力所限制。新的多元的空氣燃燒鍋爐設計,特殊的煤油嘴等都無法通過效用來減少應該最小化或是消除快速燃燒體系的探索。</p><p>  對這些需求的預料,福斯特惠勒發(fā)明了新的技術

75、來構建合理的鍋爐成分。我們的LNB操作系統(tǒng)的評價顯示許多限制來自非鍋爐成分的更多的Nox減少。通過選擇和排除這些當中的每一個因素,有意義的減少是可能存在的。</p><p>  多數(shù)的普通低Nox的通道障礙物涉及到劣質(zhì)煤和空氣分配。這些也包括高的未燃的碳,高CO,爐子殘渣,氧氣和/或蒸汽溫度不均衡,腐蝕等。</p><p>  所有低Nox燃燒體系依賴于鍋爐中一個穩(wěn)定的空氣和煤的平衡。通過

76、監(jiān)視和控制鍋爐中空氣和煤的流程,就像受益于更低的散熱和鍋爐操作的改良的新體系的存在。如果你使用類似于以下的鍋爐散熱的改造:這種趨勢比得上過去汽車工業(yè)上的加油系統(tǒng)的汽化器。福斯特惠勒堅信將來的極低Nox燃燒體系需要一個擁有嚴格控制的空氣和燃料平衡的每一個鍋爐系統(tǒng),不管它是否是切線的,墻壁的或是拱形鍋爐[1]。</p><p>  許多粉煤鍋爐曾出現(xiàn)的問題聯(lián)合劣質(zhì)煤和燃料分配:</p><p>

77、;<b>  差的散熱性能</b></p><p>  SCR和SNCR系統(tǒng)的增加的氨水消耗</p><p>  飛塵中增加的未然的碳</p><p>  鍋爐出口中扭曲的氧氣輪廓</p><p>  不均勻的蒸汽溫度輪廓</p><p><b>  火焰沖擊</b><

78、/p><p><b>  增加了扒渣</b></p><p><b>  噴淋墻壁的損耗</b></p><p>  來自設計的任何的偏差在個別的燒嘴晾干制的/激發(fā)平衡造成在燃料瘦肉或燃料富有的狀態(tài)操作的一些燒嘴。 燃料當?shù)胤叫缘卦跓煹罋庵薪档脱跛疁势鞯臅r候,富有的燒嘴正在產(chǎn)生大量的 CO ,高 LOI 和比較長的火焰。 另一

79、方面,燃料瘦肉燒嘴在提高的 O2 生產(chǎn)高度的 NOx 。 結(jié)果在鍋爐出口用高的 CO 和高的 NOx 是一個煙道氣。 除此之外,由于燒嘴動作, LOI 在低的間距是提高的。 這一張紙表示在藉由在一個鍋爐中天平空氣和燃料流量被達成的一些成功。 </p><p>  大多數(shù)的低 NOx 燒嘴和所有的切線點火系統(tǒng)在燒嘴允許氣流控制。 這些在一個式樣翻新之后被主要地在低 NOx 系統(tǒng)的初次優(yōu)化期間調(diào)整。 通常,以和時間

80、的系統(tǒng)運轉(zhuǎn)的負載和陵夷[作用] 向分布變化發(fā)表演說是不必需的。 在最近的過去中,一些廠商發(fā)展了控制策略和軟件改良鍋爐和發(fā)射運轉(zhuǎn)。 這是階段對進步的需要,不過大部份的系統(tǒng)缺乏可靠的流量測量和空氣和燃料的控制。收養(yǎng)的車夫使用燒嘴空氣測量決定存在控制裝置調(diào)整流量的第二的風流和使用 thealready 。 </p><p><b>  ECT 煤流動測量</b></p><p&

81、gt;  對于連續(xù)的鍋爐優(yōu)化, 燃料的一個在線測量在每個導管中流動在每個燒嘴被為空氣和煤平衡的在線優(yōu)化需要。 這一種技術是邁向的重要步伐之一一個超低的 NOx 點火系統(tǒng)。 </p><p>  福斯特惠勒能源公司正在與 TR 合伙-技術芬蘭的國際 Oy 在全世界在市場上銷售電荷轉(zhuǎn)移技術 (ECT)。 福斯特惠勒是 ECT 系統(tǒng)的全球布料器。 被請準專利的技術在任何的二相流量傳送中測量電荷現(xiàn)在而且使用信號決定流量的

82、下列特性。 </p><p>  * ECT 在導管之間測量比較的煤分布。 除此之外, 系統(tǒng)能配置成在每個導管中測量流量速度和絕對的流量。 煤流量平衡是連續(xù)的過度低 NOx 燃燒的主要測量。 </p><p>  * ECT 系統(tǒng)的高數(shù)據(jù)收集率在能在廠操作期間引起問題的煤導管中也允許監(jiān)視不穩(wěn)定現(xiàn)象。 信號能用來由于不夠的最初風流從制造工廠和造成爐壓力和發(fā)射漲落 [2.3]. 的煤導管縱蕩發(fā)

83、現(xiàn)煤導管地面區(qū)劃 </p><p>  * 最后, ECT 系統(tǒng)能被應用檢測煤流量的粒度變化。 作為這一個系統(tǒng)的天線和硬件是相同于在煤流量分布應用中。 因此, ECT 系統(tǒng)能用來檢測制造工廠運轉(zhuǎn) , 在線的保證適當?shù)拿毫6缺痪S護使最小未燃的碳。 系統(tǒng)的構型更詳細地被描述在 [4]. </p><p>  ECT 系統(tǒng)有在被連接到在一個內(nèi)閣被收容的一個信號凈化單位的每個煤導管中接受天線。 來

84、自這些凈化單位的信號被作為處理的數(shù)據(jù)和分析的個人計算機受到。 TR-技術的專有軟件用來在一個制造工廠的導管之間決定平衡, 顯示對操作員的結(jié)果并且經(jīng)由一個網(wǎng)絡在一部分開的計算機上對廠的直流系統(tǒng)或一個數(shù)字低音燃燒優(yōu)化軟件轉(zhuǎn)動喂數(shù)據(jù)</p><p>  天線進入煤流之內(nèi)容易地被安裝過現(xiàn)有導管的水平的或垂直鑄壁而且插入。 在管鑄壁的他們的位置被決定,以便煤繩索對測量結(jié)果的效果被使最小。 天線是用鎢碳化物做成的確定長的動

85、作壽命。裝置非常簡單而且只需要被拿離服務使最小的好幾個小時的一個制造工廠遺失了發(fā)生容量。 在裝置之后, ECT 測量被標準 ASME 或者抽樣步驟和系統(tǒng)查證然后準備好被用。</p><p>  ECT 系統(tǒng)提供一些清楚的利益: </p><p>  * 所有的信息是連續(xù)的和在線的。 </p><p>  * ECT 測量不是被煤型,水分,灰分含量或煤大小影響的。 &

86、lt;/p><p>  * 電子學能被位于來自導管的達 1200個尺。 沒有內(nèi)閣被需要在</p><p><b>  燒嘴裝飾。 </b></p><p>  * 磨耗在煤導管的反抗的天線是消極的而且沒有需要動力供給。 </p><p>  * 裝置是容易的。 天線能在短制造工廠停電期間被安裝。 </p>&l

87、t;p>  ECT 系統(tǒng)成功地是裝置在工業(yè)的廠和許多實效蒸氣的發(fā)電機。 大體上, ECT 方法的結(jié)果在導管之間甚至在煤流量的極端錯模以一個標準的 ASME 探針試驗比較得很好。 這為即時的煤均衡應用確定技術的生存能力。 因為 1998 ECT 在發(fā)電廠和五個裝置被預定的九個實效被安裝為 2001.</p><p><b>  布料器</b></p><p>  

88、在切線地被點火的多數(shù)中設置二分器砂箱被安裝在一個排氣機之后分配燃料。 這些設計能與可調(diào)整二分器砂箱一起作翻新改進達成改良燃料分布。 可調(diào)整二分器砂箱 (圖 2) 允許使存偏見對于個別的導管顆粒流量。 設計與固定的布料器 類似,但是可調(diào)整輪葉在布料器進模口被用。 對這一個設計的沒有布料器的燃料系統(tǒng)的變化需要在可能在式樣翻新應用被限制的磨粉煤機上面的另外空間。</p><p>  福斯特惠勒能源公司三方法的布料器心形

89、分級器在陀螺上被在圖 3 顯示。 制造工廠的單一出口在對三個出口的一個垂直的管被分配。 能是的分布手指推入 , 流量使存偏見從在底的中央入口管到三個出口凸緣的流量。 這一個裝置已經(jīng)被用于一些皮球磨粉機裝置。 ECT 在搖石被三方法的布料器用安置提供燃料對于手指 [5] 的一個最適宜位置流動平衡信息。</p><p>  由于整合的分布輪葉的分級器</p><p>  動的分級器提議不只改良

90、了顆粒粒度但是藉著設計也有對導管平衡的一個更好的導管。 當主要鍋爐進步的部分之時和動的分級器的一個式樣翻新可能很經(jīng)濟。 設計特征在分級器出口含分布輪葉指示對于特定的導管顆粒流量。 這些輪葉能為對燒嘴的在線燃料流量控制被裝備一個引動器。 </p><p>  來自一個靜止的分級器的分布能在一種相似的流行被影響。 分級器出口與在出口導管之間使存偏見顆粒流量的可調(diào)整輪葉一起作翻新改進。因為在顆粒已經(jīng)進入對燒嘴的導管之前

91、,煤分布主要地被決定,所以這一個溶液優(yōu)于只是在導管 (孔口 , 擋板, 及其他) 中變更完全流量的壓力落砂的裝置。 在分級器出口充滿物質(zhì)的空間的定義明確的流量場是達成這一個目標的一個主要的位置。 給間距的圖 4 表演位置在一個 MBF 制造工廠上福斯特惠勒能源公司分布輪葉。</p><p>  最近的發(fā)展工作在福斯特惠勒已經(jīng)生產(chǎn)為被裝備成形分級器和每制造工廠端二個出口的一顆心的收養(yǎng)的車夫皮球磨粉機使存偏見溶液的一

92、個燃料流量。 這些皮球磨粉機能對居住在二個出口之間修正平衡的分級器被裝備內(nèi)部的一個分布輪葉。 端-到-然后端平衡能與一個送料器偏倚一起影響。</p><p><b>  結(jié)論</b></p><p>  為了降低 NOx 的燃燒產(chǎn)物,提高鍋爐的運轉(zhuǎn)效率,需要在爐膛內(nèi)平衡空氣和燃料流量。 將來過低的NOx燃燒產(chǎn)物, 將會整合空氣和燃料測量,并且在爐膛里不斷地使分布最佳化

93、。 這些系統(tǒng)將會變得自動化和最小化,并且在爐膛中調(diào)整間距。 </p><p>  ECT 靜電煤流量測量系統(tǒng)提供一個高度可撓性的對于各種不同的測量操作被配置以許多方式: TR-技術和收養(yǎng)的車夫能公司是繼續(xù)發(fā)展而且在市場上銷售 ECT 系統(tǒng)。比較的煤流動平衡,不穩(wěn)定流量現(xiàn)象,在煤粒度,煤導管速度和絕對的大眾流量方面的改變已經(jīng)成功地被示范。 信號的多數(shù)能被當作 曾強電子工具使用到對于優(yōu)化和故障修理。 概括的說, EC

94、T 為燃燒和制造工廠操作提供下列的利益: </p><p>  * 和均衡的燒嘴 NOx 和 CO 還原</p><p>  * 比較低的 SCR 氨噴霧以空氣加熱器塞住趨向的后來進步估計, 涂漿循環(huán)而且減少滑移率</p><p>  * 未燃的碳消除還原,增加的鍋爐效率</p><p>  * 減少了飛灰的標準偏差未燃的碳, 比較一致的飛灰

95、對于售賣</p><p>  * 甚至鍋爐氧輪廓, 位減少過量空氣水準器</p><p>  * 為減少的爐和加熱時間扒渣的位</p><p>  * 更甚至蒸氣的溫度輪廓</p><p>  * 在旁的墻壁附近使存偏見的特定的空氣或燃料的結(jié)果減少了水鑄壁腐蝕</p><p>  * 減少開火系統(tǒng)調(diào)諧由于聰明的方式計時

96、</p><p>  * 為 LOI 減到最小限度的制造工廠運轉(zhuǎn)監(jiān)視藉由測量燃料粒度在線的</p><p>  * 制造工廠問題的快的接挑急速皂證認 (縱蕩, 地面區(qū)劃)</p><p>  * 減少了制造工廠一次空氣優(yōu)化的輔助機動力和增加粒度</p><p>  * 位早發(fā)現(xiàn)煤地面區(qū)劃, 在對管路的傷害之前, 燒嘴或者 出口窗發(fā)生</

97、p><p><b>  參考文獻</b></p><p>  1 Coal and Air Flow Measurement for Reduced NOx and UBC – S. Laux, J. Grusha, and K. McCarthy, presented at EPRI-DOE-EPA Combined Utility Air Pollutant Cont

98、rol Symposium, Atlanta, GA., August 16-20, 1999 </p><p>  2 Recent Trends in Pulverized Coal Firing Technology, S. Laux, J. Grusha, and J. Utt, presented at Generating Plant Efficiency & Process Improve

99、ment, Denver, CO, July 20 – 21, 2000. </p><p>  3 Benefits and Operating Experience with ECT On-line Coal Flow Measurement Technology, Update 2000, S. Laux, J. Grusha, and T. Rosin, presented at Power-Gen 2

100、000, Orlando, FL, November 14 – 16, 2000. </p><p>  4 Real Time Coal Flow and Particle Size Measurement for Improved Boiler Operation, S. Laux, J. Grusha, K. McCarthy, and T. Rosin, presented at Power-Gen 19

101、99, New Orleans, LA, November 30 – December 1, 1999. </p><p>  5 ECT On-line Coal Flow Measurement Technology – Benefits and Experience from Three Years of Operation – J. Kersch, S. Laux, J. Grusha, and T. R

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論