版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p> 中文4400字,2700單詞,14500英文字符</p><p> Diesel Engine Development and Durability</p><p> ADVANCEDDIESEL ENGINE AND AFTERTREATMENT TECHNOLOGY DEVELOPMENT FOR TIER 2 EMISSIONS</p
2、><p> Rakesh Aneja Detroit Diesel Corporation Brian Bolton Detroit Diesel Corporation</p><p> Adedejo Bukky Oladipo Detroit Diesel Corporation Zornitza Pavlova-MacKinnon, Detroit Diesel Corporati
3、on Amr Radwan Detroit Diesel Corporation</p><p><b> ABSTRACT</b></p><p> Advanced diesel engine and after treatment technologies have been developed for multiple engine and vehicl
4、e platforms. Tier 2 (2007 and beyond) emissions levels have been demonstrated for a light truck vehicle over a FTP-75 test cycle on a vehicle chassis dynamometer. These low emissions levels are obtained while retaining
5、 the fuel economy advantage characteristic of diesel engines.</p><p> The performance and emissions results were achieved by integrating advanced combustion strategies (CLEAN Combustion) with prototype afte
6、r treatment systems. CLEAN Combustion allows partial control of exhaust species for after treatment integration in addition to simultaneous NOx and PM reduction. Analytical tools enabled the engine and after treatment su
7、b-systems development and system integration. The experimental technology development methodology utilized a range of facilities to streamline d</p><p> Key Words: diesel engine, Tier 2, SCR, after treatmen
8、t, emissions, urea</p><p> INTRODUCTION</p><p> In the late 1990s, fuel use projections were prepared for future transportation requirements. Energy use among automobiles was shown to be fairl
9、y steady for the future outlook from 2000 to 2020, while Class 3 through Class 8 trucks (heavy-duty type vehicles) were predicted to increase marginally over that same twenty-year time frame. However, a significant incre
10、ase was seen in the Class 1 to Class 2 trucks (pickups, vans and SUVs). In some cases, these are used commercially, but the primary sour</p><p> At that time, it was forecast that the dieselization of the v
11、ehicle fleet, primarily these Class 1 and Class 2 light trucks, would have a significant reduction on the U. S. transportation energy use; however, many people questioned whether the diesel engine's potential to achi
12、eve future Tier 2 emissions would make it a viable option. Those who considered that the emissions hurdle could be overcome, then questioned what the resulting fuel economy improvement would be after all of the NOx abat
13、eme</p><p> As a response to this, a series of collaborative projects with the Department of Energy were initiated including the DELTA program, and later, the LEADER program at Detroit Diesel Corporation. T
14、he purpose of these programs was to look at the technical viability of meeting Tier 2 emissions and also the fuel economy impact that that would have. The approach that was followed at Detroit Diesel was an integrated an
15、alytical and experimental approach that utilized simulation in the early stages of the</p><p> Figure 1: “Dieselization” of Vehicle Fleet Offers Significant Reduction to U.S. Transportation Energy Use</p
16、><p> METHODOLOGY AND RESULTS</p><p> Control systems were integrated along with the engine control system in a fairly dynamic, yet effective way that led to significant advancements in the overa
17、ll emissions characteristics of the engine while maintaining the inherent fuel economy advantage of the diesel engine over the baseline gasoline engine. Initially, extensive simulation was conducted to design a clean she
18、et engine. This simulation was validated by actually procuring and building the engine and doing the steady state modal dev</p><p> Following the steady state development, the work and theories were validat
19、ed in a transient engine dynamometer setting where the engine could run transient engine-type of operations. Also, vehicle integration was forecast and vehicle emission types of driving cycles, such as the Federal Urban
20、 Drive Cycle, the FTP-75, the US06, and the Highway Fuel Economy Test Modes were programmed into the transient engine dynamometer. These could be run in a very controlled setting to allow for the control sy</p>&l
21、t;p> Following development on this workhorse dynamometer system, the engine was used to repower a number of commercial light truck vehicles: Dodge Durango, Dodge Dakota, and also a Class 1 DaimlerChrysler Neon passen
22、ger car vehicle, and validate some of the control system development in calibrations that had been developed. This vehicle integration then led back into the simulation domain to develop higher fidelity control systems a
23、nd calibration development. This path leads through an iterative netw</p><p> Figure 2: DAKOTA Light Truck Platform</p><p> As shown in Figure 2, the platform used in the program for the Tier
24、2 demonstration was a DaimlerChrysler Dodge Dakota light truck platform. It was</p><p> repowered with a DELTA 4-Liter V6 engine [3,4]. This engine used variable geometry turbo charging, common rai
25、l fuel injection, unique high pressure loop, cooled EGR system, created 235 HP at 4000 rpm and has been shown at the 2002 DEER conference and participated in the 2002 Ride-and-Drive in San Diego. Early in the program, a
26、n integrated emission reduction roadmap was developed for the light truck and SUV platform, as shown in Figure 3. It was based on the FTP-75 emission performance and it lo</p><p> Figure 3: Integrated Emiss
27、ions Reduction Roadmap Light Truck / SUV Platform</p><p> Once this engine out emission performance was established, then the second goal was identified: tailpipe out emissions, which showed the integration
28、 of this advanced engine control strategy with after treatment. The target for engine out emissions was essentially at a Tier 2 Bin 10 level and then going down very close to a Tier 2 Bin 9 level that was targeted, with
29、the ultimate objective of reaching Tier 2 Bin 5 with the implementation of after treatment.</p><p> At the 2002 DEER Conference, preliminary results were presented that showed the demonstration of engine ou
30、t FTP-75 emissions at the Tier 2 Bin 10 level without any after treatment [5]. This is significant in that it achieved very low engine out emissions while maintaining very high fuel economy, over 50% better than the gas
31、oline engine that was the baseline powertrain in the vehicle. By adding a catalyzed soot filter, a urea-based SCR technology and related controls, a significant reduction in</p><p> The accomplishments sin
32、ce the 2002 DEER conference have shown significant improvements in the engine out emissions and are shown in Figure 4. Without any active NOx after treatment, emissions very near the Tier 2 Bin 9 level were achieved: NOx
33、 of ~0.3 grams per mile with very low particulates. This exceeds the roadmap objectives established in the early stages of the program. Adding the urea-based SCR technology to this engine out baseline actually achieved T
34、ier 2 Bin 3 levels over the FTP-75 wh</p><p> Figure 4: NOx Reduction Via Combustion and Aftertreatment Development Light Truck / SUV Platform</p><p> One way to show the benefit of advanced t
35、echnologies employed is to categorize the NOx reduction by combustion or engine out as well as by the integration with after treatment by comparing the FTP-75 vehicle out NOx to the FTP-75 engine out NOx. This is shown i
36、n Figure 5. After treatment efficiencies are usually between ~80 - 95% over the FTP-75 cycle. These are fairly high levels of NOx reduction for the low temperature FTP-75 cycle. What the program shows is that significant
37、 reductions were at</p><p> through engine controls and through advanced capabilities.</p><p> Figure 5: NOx Reduction Via Combustion and After treatment Development Light Truck / SUV Platform
38、</p><p> While achieving Tier 2 Bin 3, essentially significantly breaking the traditional NOx/PM tradeoff curve, it is important to identify that that NOx/PM tradeoff curve still remains at each of these in
39、dividual milestones. In the same way, the NOx/Fuel Economy tradeoff curve also remains. We can plot the tradeoff curve for the range of NOx emissions from a Bin 7 to a Bin 3 showing that as NOx is reduced, the fuel econo
40、my for the FTP-75 is also reduced at some level. What is important to identify is t</p><p> So, for the 2002 Tier 2 Bin 6 level, the fuel economy for the FTP-75 was ~20 miles per gallon for this light truck
41、. In 2003, although we still have this tradeoff with fuel economy and NOx, we can now achieve a Tier 2 Bin 5 level of NOx at the same miles per gallon. This shows ~55% reduction in NOx from the previous level at the same
42、 fuel economy. Alternatively, if we maintain the same NOx, we can increase the fuel economy to a 20.5 mpg with the 2003 level emissions performance identified. Or,</p><p> we can reduce the NOx significantl
43、y to the Tier 2 Bin 3 level which is more of a 70% reduction in total NOx with minimal degradation in fuel economy. But, the message is that through subsequent iterations of engine development, the fuel economy can be re
44、covered so that there is no significant fuel economy penalty with further reductions in NOx.</p><p> These results are further demonstrated and prior results have been previously presented, if we compare th
45、e results on the passenger car platform [6-8]. We had a similar roadmap as the light truck, again, identifying two regimes: one with engine out NOx and PM targets over the FTP-75 and one integrated with after treatment l
46、ooking at Tier 2 Bin 5 level. In this case, the engine out baseline was refined early on to a much cleaner level down to a 0.4 g/mi NOx and a .05 g/mi particulate engine out w</p><p> This project showed a
47、significant improvement in fuel economy with each progressive iteration of the development methodology, where there is essentially a horizontal reduction in NOx without a fuel economy penalty. Tier 2 Bin 5 results were o
48、btained with ~67 mpg combined fuel economy, which is the combination of a FTP-75 and Highway Fuel Economy for this Neon mule vehicle. It clearly shows how the fuel economy can be recovered, or even improved, with succes
49、sive R&D when utilizing an integrated </p><p> Figure 6: Integrated Emissions Reduction Roadmap Passenger Car Platform SUMMARY AND CONCLUSIONS</p><p> In summary, this project demonstrated
50、 Tier 2 Bin 3 emissions for the light truck SUV applications, as well as for the passenger car platform, utilizing integrated diesel engine and after treatment technology, in this case, a catalyzed soot filter with a ure
51、a-based SCR system. Tier 2 is also demonstrated for the light truck platform over the US06 cycle and for the FTP-75 results (Tier 2 Bin 3). A 41% fuel economy advantage was demonstrated over the light truck gasoline base
52、line, again with the sa</p><p> Also, in summary, the development methodology emphasizing integrated testing and analysis was one of the core reasons that the Tier 2 Bin 3 emissions were demonstrated with
53、both the light truck and passenger car platforms in a fairly efficient short time scale. Considering the drivers for commercialization potential of the technology, a reduction in after treatment system complexity by incr
54、eased engine after treatment integration is required to make the technology more feasible for large scal</p><p> implementation. In addition, a sophisticated controls technology integration is absolutely
55、required considering the multi-mode combustion strategy employed and incorporating a urea reductant injection strategy and soot filter regeneration strategy in one control ECU fully integrated over the driving cycle. Thi
56、s is a significant hurdle left in the project development.</p><p> There are infrastructure needs including low sulfur fuel below the 15 ppm level that is absolutely required, and also a urea reductant for
57、SCR. We believe that the urea reductant infrastructure will be led in the heavy-duty arena, which will lay a foundation from which the light duty infrastructure can then be subsequently developed. Significant concerns ar
58、e the measurement techniques and the emissions variability that are seen at the Tier 2 levels. The effective aging and device variability on </p><p> Finally, the integrated analytical and experimental test
59、 approach is valuable and absolutely required given the limited resources and these nearer-term, high-risk objectives. Fundamental aftertreatment kinetic data is also a key need, pacing the applications of these tools an
60、d methodologies and especially pacing the integration of engine and aftertreatment technology. Hence, the species at the inlet of the aftertreatment devices over the transient is critical to ultimately integrating these
61、devi</p><p> ACKNOWLEDGMENTS</p><p> We would like to acknowledge the support received from the Office of FreedomCar Vehicle Technologies, John Fairbanks, Program Manager of DDC's Light Tr
62、uck Program and Ken Howden, Program Manager of DDC's Aftertreatment Program.</p><p> REFERENCES</p><p> EIA Annual Energy Outlook 2000, DOE/EIA-0383 (2000), December 1999.</p><p
63、> Transportation Energy Data Book: Edition 19, DOE/ORNL-6958, September 1999.</p><p> Hakim, N., Freese, C., and Miller, S., “The Detroit Diesel DELTA Engine for Light Trucks and Sport Utility Vehicles
64、– Year 2000 Update”, SAE Paper 2000-1-2197, SAE Government/Industry Meeting, Washington, DC, June 2000.</p><p> Hakim, N., and Bolton, B., SAE Paper 2001-01-2062, “The Detroit Diesel DELTA Engine – Recent
65、Technological Achievements”, 2001 SAE Government/Industry Meeting, Washington, DC, May 2001.</p><p> Aneja, R., Bolton, B., Hakim, N., and Pavlova-MacKinnon, Z., “Attaining Tier 2 Emissions Through Diesel E
66、ngine and Aftertreatment Integration - Strategy and Experimental Results”, 8th Diesel Engine Emissions Reduction (DEER) Workshop, Coronado, California, August 2002.</p><p> Zhang, H. and Bolton, B., “Applic
67、ation of Advanced Emission Control Sub-System to State-of-the-Art Diesel Engine,” Combustion and Emission Control for Advanced CIDI Engines, 2000 Annual Progress Report, U.S. Department of Energy, November 2000.</p>
68、;<p> Zhang, H., “Demonstration of Integrated NOx and PM Emissions for Advanced CIDI Engines,” Combustion and Emission Control for Advanced CIDI Engines, 2001 Annual Progress Report, U.S. Department of Energy, No
69、vember 2001.</p><p> Bolton, B., Hakim, N. and Zhang, H., “Demonstration of Integrated NOx and PM Emissions for Advanced CIDI Engines”, Combustion and Emission Control for Advanced CIDI Engines, 2001 Annual
70、 Progress Report, U.S. Department of Energy, November 2002.</p><p> 柴油機引擎發(fā)展和耐久性</p><p> 先進的柴油發(fā)動機和后處理技術的發(fā)展,第2級排放。</p><p> Rakesh Aneja 底特律柴油機公司</p><p> Brian Bolton
71、 底特律柴油機公司</p><p> Adedejo Bukky Oladipo 底特律柴油機公司</p><p> Zornitza Pavlova MacKinnon, 底特律柴油機公司</p><p> Amr Radwan 底特律柴油機公司</p><p><b> 【摘要】</b></p
72、><p> 先進的柴油發(fā)動機和后處理技術已經開發(fā)出來,用于多種發(fā)動機和車輛平臺。第2級( 2007年及以后)的排放水平已證明了輕型貨車車輛超過FTP協(xié)議的75個試驗周期對車輛底盤式功率機。柴油發(fā)動機在得到了這些低尾氣排放水平的 同時又保留了燃油經濟性的優(yōu)勢特點。</p><p> 通過將原型后處理系統(tǒng)與先進的燃燒方式(潔凈燃燒)結合,性能和排放取得了不少成果。潔凈燃燒在綜合處理之后控制部分
73、種類廢氣,同時達到氮氧化物和PM降低的目的。啟用引擎的分析工具能夠使子系統(tǒng)發(fā)展和系統(tǒng)整合。實驗技術的開發(fā)方法,利用各種設施,以簡化開發(fā)的最終解決方案,包括利用穩(wěn)態(tài)和暫態(tài)機的測試床,模擬底盤機的測試周期。</p><p> 【關鍵詞】:柴油發(fā)動機,第2級,可控硅,后處理,排放,燃燒</p><p><b> 【導言】</b></p><p>
74、 在20世紀90年代后期,燃料的使用規(guī)劃已對未來的運輸要求作好準備。展望未來,從2000至2020年汽車能源的使用是相對穩(wěn)定的,而第三至第八類卡車(重型機器類型車輛)卻被認為在這20年時間里將有微弱的增長。然而,一個顯著的上升主要出現(xiàn)在第1類至第2類車(皮卡,面包車和多功能車)。在某些情況下,這些都是用在商業(yè)上,但是增加的主要的來源被視為是客車市場用于個人的運輸?shù)娜找嬖鲩L的一部分。汽車使用的增加后來將主要增加能源的使用,從而帶動每天數(shù)
75、百萬桶的原油消費,從20世紀90年代后期的大約800萬桶增加至2020年的12.5-13萬桶[ 1,2 ]。</p><p> 有人預測,到那時,汽車的柴油機使用率,開始主要是第一類及第二類輕型卡車的柴油機使用率在美國的交通能源的使用中將有顯著的減少。 不過,很多人質疑柴油發(fā)動機實行次級排放的能力是否會影響其可行性。而那些認為可以掃除排放的障礙的人又質疑所有的氮氧化物減排技術應用和燃油效率降低之后,燃料經濟的改
76、進將是怎樣。</p><p> 為應對這個問題,一系列的同能源部的合作項目已經開展,包括三角洲計劃以及后來的底特律柴油公司的“領導者”計劃。這些計劃的目的是研究達到次級排放標準的技術可行性以及對燃料經濟性可能產生的影響。底特律柴油公司所采用的方案是一套綜合分析和應用的方案,該方案利用這個項目早期階段的模擬來發(fā)展發(fā)動機設計和策略發(fā)展需要的觀念。</p><p> 圖1 : "柴
77、油"的汽車的使用,使美國運輸能源使用顯著減少。</p><p><b> 方法及結果</b></p><p> 控制系統(tǒng)與引擎控制系統(tǒng)用適中有效的方法綜合在一起,這種方法使得在保持柴油機對汽油機固有的經濟優(yōu)勢的同時,發(fā)動機的總體排放特性也有明顯的提升。最初,廣泛的仿真指引著人們去設計一個清潔的單缸引擎。這個模型,以實際設計和生產的發(fā)動機以及做好穩(wěn)定狀態(tài)模
78、態(tài)的發(fā)展得到了驗證。這方面的努力使該模型變得適用并且使得在穩(wěn)定模式下的工作有質量保證。一旦這種實驗得到校準和完善,引擎工況水平穩(wěn)定,它將被用于預測瞬時的引擎工作性能,又仍處在穩(wěn)定狀態(tài)類型中。與分析的工具結合在高度被控制的一種穩(wěn)定的狀態(tài)測試,然后再在一個穩(wěn)定狀態(tài)中測試運行。這就回答了如何在空氣系統(tǒng),EGR系統(tǒng)和提高發(fā)動機性能的燃燒系統(tǒng)間找到平衡的問題。 </p><p> 伴隨穩(wěn)定狀態(tài)的發(fā)展,這些工作和理論被暫態(tài)
79、發(fā)動機測功計驗證,這個測功機位于發(fā)動機能夠進行暫態(tài)發(fā)動機類型工作的位置。同時,車輛綜合在預報和車輛噴射類型的的推動的周期,諸如聯(lián)邦城市的驅車周期,F(xiàn)TP-75,US06,而公路燃料經濟測試方式被編入瞬時的引擎測力計。這些可以在一個非??刂圃O置下運行,從而允許為控制系統(tǒng)和校準得到改進。</p><p> 伴隨著馬力測力計系統(tǒng)的發(fā)展,發(fā)動機被用來帶動一系列商用輕型卡車:道奇杜蘭戈,道奇Dakota ,也是世界第1類
80、戴姆勒克萊斯勒霓虹客車車輛,并且部分驗證控制系統(tǒng)發(fā)展校準已制定。這種車輛綜合后,再往回到仿真領域中發(fā)展高保真控制系統(tǒng)和校準發(fā)展。這是一條線索,通過一個迭代網絡的發(fā)動機和后處理的發(fā)展。至于第二,第三和第四次迭代,通過這樣的循環(huán),后處理日益一體化。</p><p> 圖2 :達科他輕型卡車平臺</p><p> 如圖2所示,該平臺也可用于該計劃中,為第2級示范的是戴姆勒克萊斯勒道奇Dako
81、ta輕型卡車平臺。搭載的是一臺加強4升V6發(fā)動機[ 3,4 ] 。這種發(fā)動機采用可變幾何渦輪充電時,共軌燃油噴射,獨特的高壓力回路,冷卻EGR系統(tǒng),創(chuàng)造了235馬力, 4000 rpm優(yōu)越性能表現(xiàn),并在2002年展示,,并參加了2002年在圣迭戈的乘坐和駕駛展示。在項目早期,一個綜合性的減排路線被開發(fā)為輕型卡車和SUV的平臺,如圖3所示。它是基于與FTP - 75廢氣排放性,并它在兩個領域得以體現(xiàn)。第一個領域是利用清潔燃燒的引擎控制策略
82、和進步來確認發(fā)動機的排放。這個項目專利性和先進性的燃燒技術在顯著減少發(fā)動機排放的同時,對燃油經濟性沒有重大的影響,事實上,對瞬態(tài)燃油經濟性沒有任何切實的影響。</p><p> 圖3 :輕型卡車/越野車平臺綜合排放削減路線 </p><p> 一旦這個發(fā)動機外排放是既定的,那么第二個目標就確定了:排氣管排放通過后處理顯示這個先進發(fā)動機控制策略的綜合性。發(fā)動機外排放的目標是在第2級10個
83、等級,然后逐年下降非常接近第2級的9級水平,這是有針對性的,其最終目標是達到2級的5級的最終的目標。</p><p> 在2002DEER會議,初步的結果被顯示發(fā)動機在第2級的10水平且沒有后處理[5]的外排放 。這有重要意義,因為它在取得了非常低的發(fā)動機排放的同時保持了非常高的燃油經濟性,比以汽油機作動力的車高出50%。加入催化的煙塵過濾器,尿素為基礎的可控硅技術和相關的管制措施,氮氧化物和粉塵減少,并且在F
84、TP-75無任何氨滑移的情況下實現(xiàn)第2級6水平的排放。同汽油機相比,這種排放效益要高45%。</p><p> 自2002年DEER會議以來,發(fā)動機外排放有了很大的提高,如圖4所示。非常接近第2級9水平的排放,在沒有活躍的氮氧化物后處理情況下實現(xiàn)。氮氧化物的? 0.3克每英里很低的微粒。這超過了在初期階段的計劃路線確立的目標。通過把以尿素為基礎的SCR技術添加到發(fā)動機中,F(xiàn)TP-75實現(xiàn)了第2類第3級排放 ,同
85、時與汽油機相比,燃油效益高出40%。再次,這些排放水平是在FPT-5周期無任何氨滑移的情況下取得的。此外, US06水平也是第2級排放水平在利用催化的煙塵過濾器和以尿素為基礎的SCR技術的情況下取得的。</p><p> 圖4 : NOx還原經燃燒和后處理發(fā)展輕型卡車/越野車平臺</p><p> 用以顯示這項先進技術的好處的一種方法是將氮氧化物減少原因的歸類,可分為由于燃燒或者發(fā)動機
86、不同,以及通過比較FTP-75汽車的外氮氧化物排放量和FTP-75發(fā)動機的外排放量對后處理綜合性能的影響。在FTP-75放入循環(huán)中,后處理效率通常在80%-95%。對于低溫的FTP-75循環(huán)來說,這些是相當高水平的氮氧化物減少量。這個項目顯示,去年,通過進一步利用清潔燃燒技術,提升檢查和控制策略,發(fā)動機氮氧化物外排量有了顯著的降低。發(fā)動機氮氧化物外排量減少了一半以上。而且,F(xiàn)TP-75循環(huán)氮氧化物排放減少技術有意義的提高表現(xiàn)在從去年的8
87、5%上升到今年的90%。這是通過充分開發(fā)控制系統(tǒng)和先進的復合模式燃燒的潛能實現(xiàn)的。這些充分表現(xiàn)了先進的發(fā)動機和后處理綜合技術,這些是這些技術和項目內在的要求,尤其當你考慮從模擬反復開始,經過穩(wěn)態(tài),瞬態(tài)發(fā)動機,最終到達汽車使用階段。我們經歷的那種循環(huán)越多,我們就越能通過發(fā)動機設計,發(fā)動機控制和先進的潛能將后處理與發(fā)動機結合。</p><p> 圖5 : NOx還原經燃燒和后處理的發(fā)展輕型卡車/越野車平臺</
88、p><p> 而實現(xiàn)第二級,尤其當破壞傳統(tǒng)的NOx折衷方案曲線時,找出這種氮氧化物權衡曲線仍然停留在上述每個單獨的轉折點顯得很重要。氮氧化物/燃油經濟性權衡曲線仍然以同樣的方式存在。我們可以在曲線上標出氮氧化物從7級到3級的變化情況,以顯示出:當?shù)趸餃p少時FTP-75的燃油經濟性也減少到同樣的水平。內在的燃油經濟復蘇潛力的確認是很重要的。在發(fā)展思路的每一步,燃油經濟性下降的原因都被確認,并且記錄在下面的循環(huán)中。
89、</p><p> 因此,對于2002年第2級6級水平,F(xiàn)TP - 75 的燃油經濟性為:輕型卡車每加侖行駛20英里。在2003年,雖然我們有燃油經濟性和氮氧化物的綜合,但我們現(xiàn)在可以在沒加侖同樣里程數(shù)的情況下達到第2類第5級的水平。這表明在同樣的燃油經濟性條件下,氮氧化物的排放量比以前減少了55%。反過來說,如果我們保持相同的氮氧化物,以2003年確定的排放標準,燃油經濟性可以增長到沒加侖行駛20.5英里。或
90、者,我們可以將氮氧化物的排放量有效的減少到第2類第3級標準,這相當于在燃油經濟性減少最少的基礎上將氮氧化物排放量減少了70%以上。有這樣一個信息:經過發(fā)動機不斷的發(fā)展,燃油經濟性不斷的提高,因此進一步減少氮氧化物的排放量不會對燃油經濟性產生多大不利的影響。如果我們把乘用車平臺作比較,這些結果可以被進一步說明,前面的結果已經有所呈現(xiàn)。我們有和輕卡相類似的路線圖,區(qū)分兩種體制:一種是發(fā)動機具有氮氧化物外排和FTP-75粉末的,另一種是與瞄準
91、第2類第5級的后處理系統(tǒng)相結合的。在這種情況下,發(fā)動機外輪廓在沒有后處理的情況下被提煉到一個更加清潔的水平:氮氧化物0.4g/mi和0.5g/mi。通過一個煙塵催化過</p><p> 這個項目顯示了燃油經濟性隨著發(fā)展思路的提升而產生的重大進步,同時在燃油經濟性不受損害的情況下氮氧化物排放量有初步降低。第2類第5級結果是在67mpg的混合經濟,這是FTP-75和高速路燃油經濟的結合。這清晰的顯示出當利用合成分析
92、和實驗方法時,燃油經濟如何得以提高。</p><p> 圖6 :客運車平臺的綜合排放削減路線</p><p><b> 總結和結論</b></p><p> 總之,這個項目利用綜合柴油機和具有含SCR系統(tǒng)的催化過濾器后處理及技術來說明輕卡SUV和乘用車平臺的第2類第3級排放。第2類用來說明超過US06循環(huán)的輕卡平臺和FTP-75結果。用同
93、樣的汽車做測試,這比輕型汽油機卡車高出41%的燃油經濟性。排放量的減少首先歸功于先進的燃燒技術,并且通過在沒有活躍的氮氧化物后處理的情況下實現(xiàn)第9級氮氧化物排放和PM水平實現(xiàn)的。尿素噴射控制策略是取得良好排放的首要原因,它在最大程度減小氨滑移的同時最大程度的減小了氮氧化物排放量。</p><p> 同時,概括地說,強調綜合測試和分析的發(fā)展策略是短時間內輕卡和乘用車實現(xiàn)第2類第3級排放的核心原因。考慮到司機們都看
94、重一項技術的商業(yè)潛能,要過發(fā)動機后處理綜合來降低后處理系統(tǒng)的復雜性就必須使這項技術有更大范圍的實用性??紤]到復合模式的燃燒策略,并且把尿素還原劑噴射策略和過濾器換代策略融合在一個ECU中,我們需要精密的控制技術。這是該項目發(fā)展的一個重大障礙。。</p><p> 我們需要一些諸如在15PPM水平以下的必需的低硫燃料和SCR尿素還原劑。我們相信尿素還原劑將被用于重工作領域,而這又將為輕工作的發(fā)展奠定基礎。測量技術
95、和第2類水平的排放多樣性是需要重點考慮的。后處理的有效壽命和設備多樣性,以及這兩者的結合在預言長期排放中起著重要作用。處理低排放發(fā)動機的結果時數(shù)據分析是很必要的。</p><p> 最后,由于資源有限,短期性和高風險,綜合分析和實驗方法是很有用,也是絕對必要的。基礎的動力數(shù)據也是很關鍵的,因為它將這些工具與理論結合,并且將發(fā)動機與后處理技術結合。因此,暫態(tài)時的后處理設備對整合設備和進一步簡化它們起著重要作用。&
96、lt;/p><p><b> 認知</b></p><p> 我們真誠地感謝FreedomCar汽車技術辦公室,以及DDC輕卡項目主任John Fairbanks和DDC后處理項目主任Ken Howden的支持。</p><p><b> 【參考文獻】</b></p><p> 1 。環(huán)評年度能
97、源展望2000年, doe/eia-0383 ( 2000 ) , 1999年12月。</p><p> 2 。運輸能源資料書: 19版, doe/ornl-6958 , 1999年9月。</p><p> 3 。哈基姆, 12月31日,弗里茲,丙,和米勒,美國, "底特律柴油發(fā)動機三角洲為輕型卡車和運動休旅車-到2 000年更新" , S AE的文件2 000-1
98、-2197, S AE的政府/工業(yè)界會議上,華盛頓哥倫比亞特區(qū), 2000年6月。</p><p> 4 。哈基姆, 12月31日,和博爾頓,乙, SAE的文件2001-01-2062 " ,底特律柴油發(fā)動機三角洲-最新的科技成就" , 2 001年的S AE政府/工業(yè)會議上,華盛頓特區(qū), 2 001年5月。</p><p> 5 。阿尼婭,傳譯,博爾頓,乙,哈基姆
99、, 12月31日,帕夫洛娃-輕松種" ,達到2級排放柴油機和后處理一體化-戰(zhàn)略與實驗結果" ,第8次柴油機排放量減少(鹿)車間,加利福尼亞 州科羅納多, 2002年8月。</p><p> 6 。Zhang, H. and Bolton,,是采用先進的廢氣排放控制系統(tǒng),以先進的技術設備先進的柴油發(fā)動機, "燃燒與排放控制先進cidi引擎, 2000年的年度進展報告,美國能源部,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--柴油發(fā)動機發(fā)展和耐久性
- 外文翻譯--柴油發(fā)動機發(fā)展和耐久性.doc
- 外文翻譯--柴油發(fā)動機發(fā)展和耐久性.doc
- 外文翻譯--柴油發(fā)動機發(fā)展和耐久性.doc
- 外文翻譯--柴油發(fā)動機發(fā)展和耐久性.pdf
- 外文翻譯--柴油發(fā)動機發(fā)展和耐久性.doc
- 外文翻譯--柴油發(fā)動機發(fā)展和耐久性.doc
- 外文翻譯--柴油發(fā)動機發(fā)展和耐久性.doc
- 外文翻譯--柴油發(fā)動機發(fā)展和耐久性.doc
- 外文翻譯--柴油發(fā)動機發(fā)展和耐久性.pdf
- 外文翻譯--柴油發(fā)動機發(fā)展和耐久性.doc
- 柴油機外文翻譯
- 柴油機外文翻譯
- 柴油發(fā)動機發(fā)展和耐久性
- 柴油發(fā)動機發(fā)展和耐久性
- 柴油發(fā)動機發(fā)展和耐久性.docx
- 柴油發(fā)動機發(fā)展和耐久性.docx
- 外文翻譯----柴油機的工作原理
- 外文翻譯----混凝土結構的耐久性
- 影響耐久性強度的因素外文翻譯
評論
0/150
提交評論