版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 自適應(yīng)PID控制器</b></p><p> 基于Ziegler Nichols自整定方法的參數(shù)的PLC</p><p><b> 摘要</b></p><p> 本文介紹一種改進(jìn)的PID控制器是作為一個(gè)動(dòng)態(tài)的系統(tǒng)控制器和必要的步驟,是解釋以表達(dá)對(duì)所提出的PID控制算法是更多的功能比傳統(tǒng)
2、的PID控制算法。在這里齊格勒-尼科爾斯的過(guò)程中反應(yīng)的方法是澄清,以候任自校正,及的優(yōu)勢(shì),自我調(diào)整中有詳細(xì)的解釋。之后,自適應(yīng)丕三維控制器的算法,給出了使用自整定方法的初始參數(shù)。在這丕三維,比例和積分參數(shù)是在控制的自適應(yīng)算法和衍生產(chǎn)品的參數(shù)是一個(gè)不斷發(fā)現(xiàn),在齊格勒尼科爾斯基于自整定方法。最后,完整的算法是測(cè)試在可編程邏輯控制器,和結(jié)果,這項(xiàng)測(cè)試是提供和解釋。</p><p><b> PID控制器&l
3、t;/b></p><p> 一比例積分微分控制器或PID控制器是一種常見(jiàn)的用于控制器在工業(yè)控制應(yīng)用。控制器的比較衡量的過(guò)程產(chǎn)值(元Y )與參考設(shè)定值( )值。差異或錯(cuò)誤信號(hào)( e )是處理,然后計(jì)算控制信號(hào)為操縱的過(guò)程中的投入,使系統(tǒng)輸出達(dá)到所期望的參考價(jià)值。不同于簡(jiǎn)單的控制算法, PID控制器可以調(diào)整的過(guò)程中投入的基礎(chǔ)上,歷史和變化率的錯(cuò)誤信號(hào),這使更準(zhǔn)確和更穩(wěn)定的控制。在這方面的文件,不同結(jié)構(gòu)的PI
4、D控制器是使用。</p><p> 圖1結(jié)構(gòu)的PID控制器</p><p> 圖1結(jié)構(gòu)的PID控制器 </p><p> 眾所周知,衍生金融工具可以計(jì)算或獲得如果錯(cuò)誤變緩慢。由于反應(yīng)衍生工具,以高頻率的投入是遠(yuǎn)遠(yuǎn)高于其反應(yīng)慢變信號(hào)[ 13 ] 。因此,衍生金融工具的輸出在圖1是smoothened為高頻率的噪音,用一階過(guò)濾器,它使用的輸出系統(tǒng)( y )的。衍生
5、工具使用錯(cuò)誤的信號(hào)可以形成高,衍生金融工具的輸出時(shí),誤差信號(hào)具有較高的高頻成分。因此,在本文件中衍生金融工具的投入使用過(guò)濾的輸出系統(tǒng)。在這里,過(guò)濾器smoothens信號(hào)和抑制高頻率的噪音,由于過(guò)濾器的時(shí)間( TF )的常數(shù)(圖2 ) 。在應(yīng)用,其TF應(yīng)大于6月24日ts采樣周期[ 6 , 16 ] 。</p><p> 圖2 ,穩(wěn)定系統(tǒng)的輸出響應(yīng)( PLC模擬)</p><p> 在
6、圖1 ,積分信號(hào)是由錯(cuò)誤乘以增益( k )和除以積分時(shí)間,和飽和度的差異除以積分時(shí)間。 PID控制器是一個(gè)魯棒控制器和這個(gè)結(jié)構(gòu)提出了一種更強(qiáng)大的控制器。飽和的組成部分是必要的離散時(shí)間控制器[ 8 ] 。正如以前說(shuō)過(guò),這個(gè)結(jié)構(gòu)是用來(lái)在一個(gè)可編程邏輯控制器,這種控制器的最高和最低的邊界。飽和組件的供應(yīng)沒(méi)有達(dá)成任何的另一點(diǎn),除限制的最高和最低的邊界。因此,控制信號(hào)( u )的是有限的。</p><p> 齊格勒-尼科
7、爾斯的過(guò)程中反應(yīng)法</p><p> 過(guò)程中反應(yīng)法是一個(gè)實(shí)驗(yàn)的開(kāi)環(huán)整定方法,并只適用于開(kāi)環(huán)穩(wěn)定系統(tǒng)。此方法由齊格勒和尼科爾斯是基于過(guò)程的信息的形式,開(kāi)環(huán)階躍響應(yīng)得到了來(lái)自撞測(cè)試。這個(gè)方法可以被看作是傳統(tǒng)方法的基礎(chǔ)上的建模與控制。該齊格勒-尼科爾斯調(diào)整規(guī)則,發(fā)達(dá)國(guó)家給予閉環(huán)系統(tǒng)具有良好的衰減負(fù)載擾動(dòng)。設(shè)計(jì)標(biāo)準(zhǔn)是四分之一振幅衰減的比例,這意味著振幅一振蕩應(yīng)減少的一個(gè)因素4超過(guò)整個(gè)時(shí)期。這相當(dāng)于閉環(huán)極點(diǎn)與相對(duì)阻尼約
8、二,這是太小[ 1 ] </p><p><b> 圖3 </b></p><p> 計(jì)算PID參數(shù)使用齊格勒-尼科爾斯的過(guò)程中反應(yīng)法</p><p> 這種方法的特點(diǎn)首先是核電廠(chǎng)的兩個(gè)參數(shù)nmax和L為一階和二階死亡時(shí)間系統(tǒng),然后計(jì)算PID參數(shù)( 4 ) 。這里n是最高點(diǎn),最高坡度和L是死時(shí)間。 </p><p>
9、;<b> ?。?4 ) </b></p><p> 首先的一個(gè)步驟信號(hào)是適用的制度和程序啟動(dòng)搜索死區(qū)時(shí)間。死區(qū)時(shí)間是的時(shí)候,系統(tǒng)沒(méi)有反應(yīng)的參考信號(hào)。在計(jì)劃,寬容是由于測(cè)量死區(qū)時(shí)間(圖4 ) ,因?yàn)榭傆心敲匆恍└哳l率的測(cè)量噪音,在系統(tǒng)輸出。作為如圖4所示,這些信號(hào)和分布的變化,在一區(qū)間的定義容忍。之后,動(dòng)力系統(tǒng)開(kāi)始跟進(jìn)參考,并達(dá)致以外的容忍邊界,死時(shí)間的計(jì)算方式是PLC程序。 </p
10、><p><b> 圖4容忍極限</b></p><p> 如果死區(qū)時(shí)間是成品或計(jì)算,該程序?qū)?dòng)搜索最高的斜坡。它收集所有斜坡及后加以搜集,選擇最大的斜坡。每一個(gè)斜坡計(jì)算方程( 5 ) 。
11、</p><p><b> ?。?5 )</b></p><p> 它memorizes產(chǎn)值前一段時(shí)間,并采取了產(chǎn)值近一段時(shí)期,并劃分為他們的差異,采樣周期[ 3 , 5 ] 。接著該程式構(gòu)成的數(shù)據(jù),所有的斜坡,并選擇最大的斜坡。當(dāng)最大坡度的計(jì)算方法,程序等待穩(wěn)定狀態(tài),因?yàn)閰?shù)的系統(tǒng)是穩(wěn)定的在穩(wěn)定狀態(tài)。最后,程序會(huì)計(jì)算PID參數(shù)。</p><p&
12、gt; 概括起來(lái),計(jì)算PID參數(shù)使用齊格勒-尼科爾斯p rm;第一所收集的資料,從開(kāi)環(huán)植物響應(yīng)單位階躍輸入,然后檢查數(shù)據(jù)集,以找到最高的斜坡(圖3 )后,然后確定參數(shù)所需的齊格勒尼科爾斯prm ,最后,使用調(diào)諧關(guān)系產(chǎn)生的PID常數(shù)。 </p><p> 魯棒性齊格勒-尼科爾斯方法</p><p> 一個(gè)良好的PID控制器的設(shè)計(jì)應(yīng)表現(xiàn)出的魯棒性方面的小擾動(dòng),在控制器的系數(shù)。因此,一系列
13、的價(jià)值觀(guān),確保魯棒性是確定的齊格勒-尼科爾斯p rm在( 6 ) ,是系統(tǒng)的時(shí)間常數(shù)(無(wú)控制器)為一階死系統(tǒng)( f ods) ,是解決時(shí)間(不包括控制器)二階死亡時(shí)間系統(tǒng)( sods ) [ 3 ] 。</p><p><b> ?。?6 ) </b></p><p> 圖5的仿真結(jié)果fodss向階躍響應(yīng)
14、160; </p><p><b> ?。?7 )</b></p><p> 可以看出,在方程組( 7 )和圖5 ,系統(tǒng)是一個(gè)更強(qiáng)大的系統(tǒng)比和系統(tǒng),由于比例。當(dāng)比率增加,從系統(tǒng)的沉降時(shí)間減
15、少,當(dāng)比率下降,從系統(tǒng),使超像一個(gè)二階系統(tǒng),當(dāng)比例大約是零,系統(tǒng),使振蕩[ 2 ] 。</p><p> 在方程組( 8 )和圖6 ,系統(tǒng)是一個(gè)更強(qiáng)大的系統(tǒng)比和系統(tǒng),由于比例。作為相似的,以圖6 ,系統(tǒng)具有良好的表現(xiàn),由于比例是大約。</p><p> 圖6的仿真結(jié)果sodss向階躍響應(yīng)
16、160; </p><p><b> ?。?8 )</b></p><p> 從數(shù)字六日及七日,齊格勒-尼科爾斯的過(guò)程中反應(yīng)法( p rm)始終提供了一個(gè)負(fù)責(zé)任的比例增益為P ID控制器。該方法不僅給表現(xiàn)良好,但也具有較強(qiáng)的魯棒性方面的控制器參數(shù)攝動(dòng)[ 11 ] 。</p><
17、;p> 自校正使用齊格勒尼科爾斯的過(guò)程中反應(yīng)法</p><p> PID參數(shù)必須有決心,從動(dòng)態(tài)系統(tǒng)。正如以前說(shuō)過(guò),系統(tǒng)參數(shù)變化的影響,因?yàn)榉N種原因。如果PID控制器參數(shù)保持不變,相當(dāng)長(zhǎng)的時(shí)間,動(dòng)力系統(tǒng)無(wú)法控制的PID控制有效。根軌跡法,預(yù)示著頻分析方法和一些方法,這樣可用于這一計(jì)算的。但這些方法有復(fù)雜的數(shù)學(xué)計(jì)算,也系統(tǒng)和反饋系統(tǒng)的disturbations不能衡量一時(shí)沒(méi)有任何錯(cuò)誤。此外,系統(tǒng)參數(shù)(如系統(tǒng)
18、增益)的變化,由于環(huán)境的變化。基于這些原因,自整定PID控制器是必要的,因?yàn)檫@種類(lèi)型的控制器,可用于不同類(lèi)型的系統(tǒng)和環(huán)境的情況。此外,自整定PID是一個(gè)魯棒控制器系統(tǒng)的不確定部分。也為在不斷變化的系統(tǒng)動(dòng)力學(xué)控制器采用本身。因此,使用自整定PID是合理的而不是用任何其他的PID控制器已不斷參數(shù)[ 6 ] 。</p><p> 程序算法的PLC是由于在圖8 。該算法連續(xù)兩個(gè)啟動(dòng)選項(xiàng):一個(gè)是工作與最近的參數(shù)計(jì)算之前;
19、另一種選擇是工作與新參數(shù)。在這個(gè)選項(xiàng)中,程序發(fā)現(xiàn)新的PID參數(shù)的系統(tǒng)。由于齊格勒-尼科爾斯方法是適用于開(kāi)環(huán)系統(tǒng),計(jì)劃首先取消了系統(tǒng)的意見(jiàn),并等待系統(tǒng)響應(yīng)的解決。當(dāng)系統(tǒng)的輸出是復(fù)位,程序記錄系統(tǒng)的瞬時(shí)輸入,然后程序適用的一個(gè)步驟信號(hào)系統(tǒng)的投入。應(yīng)該說(shuō),這一步的信號(hào)是,至少有10 %大于系統(tǒng)的電流輸入(參考)價(jià)值[ 11 ] 。</p><p> 如果階躍信號(hào)小于10 % ,系統(tǒng)參數(shù)無(wú)法確定合理的。之后,運(yùn)用階躍信
20、號(hào),程序等待,直到系統(tǒng)輸出,收于產(chǎn)值。當(dāng)系統(tǒng)的輸出是穩(wěn)定的,程序會(huì)計(jì)算PID參數(shù)使用齊格勒-尼科爾斯的過(guò)程中反應(yīng)的方法和他們傳送至P ID參數(shù)輸入。當(dāng)PID參數(shù)加載,程序的重視,系統(tǒng)反饋和PID控制器。因此,系統(tǒng)開(kāi)始工作,與PID控制器。</p><p> 澄清,必要的步驟,給出了在一個(gè)序列如下: </p><p> -運(yùn)行系統(tǒng)在開(kāi)環(huán)模式</p><p> -
21、等到系統(tǒng)輸出成為穩(wěn)定</p><p> -記錄系統(tǒng)的輸入和輸出</p><p> -適用的一個(gè)步驟輸入系統(tǒng)(大于1 0% ,最近輸入)</p><p> -等到系統(tǒng)輸出成為穩(wěn)定</p><p> -計(jì)算P ID參數(shù)和工作與P ID控制器。</p><p><b> 自適應(yīng)控制</b>&l
22、t;/p><p> 在日常用語(yǔ), “適應(yīng)”是指改變一個(gè)行為,以符合新的情況。直觀(guān),一自適應(yīng)控制器是一個(gè)控制器,可以修改其行為的反應(yīng)的變化的動(dòng)態(tài)過(guò)程和性質(zhì)的騷亂。</p><p> 在第3條中,齊格勒尼科爾斯的過(guò)程中反應(yīng)的方法了三個(gè)不斷參數(shù)PID控制器;陳家強(qiáng),鈦和TD 。不過(guò),有些系統(tǒng)的反應(yīng),可不可預(yù)知的,而這些PID參數(shù)不能有效地工作。此外,自適應(yīng)控制可以幫助同時(shí)提供穩(wěn)定和良好的回應(yīng)。該
23、辦法的變化,控制算法系數(shù)的實(shí)時(shí)性,以補(bǔ)償?shù)淖兓谥贫缺旧?。在一般,控制器,定期監(jiān)測(cè)系統(tǒng)傳遞函數(shù),然后修改控制算法。它這樣做的同時(shí)學(xué)習(xí)的過(guò)程,而控制其行為。</p><p> 調(diào)整的自適應(yīng)算法向自我調(diào)整計(jì)劃</p><p> 自我-調(diào)整參數(shù),自適應(yīng)算法和P I三維控制器與對(duì)方一樣,在圖1 0。正如以前說(shuō)過(guò),衍生金融工具的參數(shù),直接去丕三維控制器,增益和積分計(jì)算,首先去的自適應(yīng)算法,然后
24、丕三維控制器。</p><p><b> 結(jié)論</b></p><p> 在這篇文章的自適應(yīng)丕三維控制器-使用齊格勒尼科爾斯基于自校正方法的參數(shù)是介紹及其應(yīng)用在一個(gè)可編程邏輯控制器,給出了。為此目的,首先,所有在執(zhí)行的一部分,工業(yè)PID控制算法是用于PID控制的衍生金融工具的投入是采取由系統(tǒng)輸出和過(guò)濾,如此高的頻率信號(hào)'的影響減至最低。然后,積分任期是證實(shí)
25、獲得更多的魯棒PID的結(jié)構(gòu)和最后輸出的PID是有限的,由于臨立會(huì)的最高和最低范圍內(nèi)。其次,齊格勒-尼科爾斯的方法,給出了一起魯棒性的定義,是界定。可以看出,大部分工業(yè)系統(tǒng)在集團(tuán)這個(gè)魯棒性的限制。調(diào)整的自適應(yīng)算法,以自整定PID控制器在第4條,魯棒性限制是增加。</p><p> 為貫徹落實(shí)發(fā)展算法1西門(mén)子S7 - 400的CPU 412-2 DP的PLC的是選定作為一個(gè)控制器由于其良好的性能和它的發(fā)展結(jié)構(gòu)。事后
26、發(fā)達(dá)PLC的算法是模擬的兩個(gè)二階系統(tǒng)。結(jié)果表明,自適應(yīng)丕三維控制器具有良好的表現(xiàn),一個(gè)大型的比例,工業(yè)系統(tǒng)。</p><p> 作為一個(gè)結(jié)果,在這項(xiàng)工作中, PID的應(yīng)用程序和系統(tǒng)仿真塊,得到了普遍使用在其他的工業(yè)體系。</p><p> Adaptive PID Controller </p><p> Using Ziegler Nichols based
27、 Self-Tuning Method’s Parameters for Programmable Logic Controllers</p><p><b> Abstract</b></p><p> In this paper a modified PID controller is presented as a dynamic system control
28、ler and necessary steps are explained in order to express the presented PID algorithm is more functional than the classic PID controller algorithms. Here Ziegler-Nichols process reaction method is clarified to designate
29、self-tuning, and advantages of self-tuning are explained in detail. After that, an adaptive PI-D controller algorithm is given using self-tuning method’s initial parameters. In this PI-D, proportion a</p><p>
30、; PID Controller</p><p> A Proportional-Integral-Derivative controller or PID controller is a common used controller in industrial control applications. The controller compares the measured process output
31、value (y) with the reference setpoint (r) value. The difference or error signal (e) is then processed to calculate the control signal for the manipulated process inputs so the system output reaches the desired reference
32、value. Unlike simpler control algorithms, the PID controller can adjust process inputs based on the </p><p> Figure 1 Structure of PID Controller</p><p> The Structure of the PID Controller in
33、 Figure 1</p><p> As known, the derivative can be computed or obtained if the error varying slowly. Since the response of the derivative to high-frequency inputs is much higher than its response to slowly v
34、arying signals [13]. So the derivative output in Figure 1 is smoothened for high-frequency noises by using first order filter, and it uses output of the system (y). The derivative which uses error signal can form high de
35、rivative output when the error signal has high frequency components. Thus, in this paper the</p><p> Figure 2 Smoothen of System Output Response (PLC Simulation)</p><p> In figure 1, the inte
36、gral signal is formed by the error multiplied by gain (K) and divided by integral time, and saturation difference divided by integral time. PID controller is a robust controller and this structure puts forward a more rob
37、ust controller. The saturation component is necessary for discrete time controllers [8]. As said before, this structure is used in a programmable logic controller, and this controller has maximum and minimum borders. The
38、 saturation component supplies not to r</p><p> Ziegler-Nichols Process Reaction Method</p><p> Process reaction method is an experimental open-loop tuning method and is only applicable to ope
39、n-loop stable systems. This method presented by Ziegler and Nichols is based on process information in the form of the open loop step response obtained from a bump test. This method can be viewed as a traditional method
40、 based on modeling and control. The Ziegler-Nichols tuning rules were developed to give closed loop systems with good attenuation of load disturbances. The design criterion was quarter</p><p> Figure 3 Zie
41、gler-Nichols PRM</p><p> Calculations of PID Parameters Using Ziegler-Nichols Process Reaction Method</p><p> This method firstly characterizes the plant by two parameters Nmax and L for first
42、 and second order dead time systems and then calculates PID parameters (4). Here N max is the point of maximum slope and L is the dead time.</p><p><b> (4)</b></p><p> First a step
43、 signal is applied to the system and program starts to search the dead time. The dead time is the time when system gives no response to reference signal. In program, a tolerance is given for measuring the dead time (Figu
44、re 4), because there are always some high frequencies measuring noises at system output. As shown in Figure 4, these signals and distributions change in an interval defined tolerance. After the dynamic system starts to f
45、ollow reference and reaches outside the toleranc</p><p> Figure 4 Tolerance Limit</p><p> If the dead time is finished or calculated, the program starts to search maximum slope. It collects a
46、ll slopes and after collecting them, it selects the biggest slope. Every slope is calculated with equation (5).</p><p><b> (5)</b></p><p> It memorizes the output value of previous
47、 period and takes the output value of the recent period and divides their difference by sampling period [3, 5]. Then the program constitutes data of all slopes and selects the biggest slope. When the maximum slope is cal
48、culated, the program waits steady state because the parameters of system are stable in steady state. Finally, the program calculates PID parameters. </p><p> To sum up, to calculate PID parameters using Zie
49、gler-Nichols PRM; first gather data from open-loop plant response to unit step input, then examine data set to find the maximum slope (Figure 3), after then determine the parameters needed for Ziegler Nichols PRM, finall
50、y, use tuning relations to generate PID constants. </p><p> Robustness of Ziegler-Nichols Method</p><p> A good PID controller design should exhibit robustness with respect to small perturbati
51、ons in the controller coefficients. Thus, the range of values that ensures robustness was determined for Ziegler-Nichols PRM in (6), where is system’s time constant (without controller) for first order deadtime systems
52、 (FODS), and is settling time (without controller) for second order dead time systems (SODS) [3].</p><p><b> (6)</b></p><p> Figure 5 Simulation Results of FODSs to the Step Resp
53、onse</p><p><b> (7)</b></p><p> As seen in equations in (7) and figure 5, system is a more robust system than do and systems due to ratio. When ratio increases from , system se
54、ttling time is decreasing and when ratio decreases from system makes overshoot like a second order system, and when ratio is approximately zero, systems make oscillation [2].</p><p> In equations in (8)
55、and Figure 6, system is a more robust system than do and systems due to ratio. As resembling to figure 6, system has a good performance due to ratio is approximately. </p><p> Figure 6 Simulation Resul
56、ts of SODSs to the Step Response</p><p><b> (8)</b></p><p> From figures 6 and 7, Ziegler-Nichols process reaction method (PRM) always provides a responsible proportional gain for
57、PID controller. This method not only gives good performance but also is robust with respect to controller parameter perturbations [11].</p><p> Self-Tuning using Ziegler Nichols Process Reaction Method</
58、p><p> PID parameters must be determined from dynamic system. As said before, system parameters change because of various reasons. If PID controller parameters remain the same for a long time, the dynamic syst
59、em could not be controlled by PID efficiently. Root locus method, bode-frequency analysis method and some methods like this can be used for this calculation. But these methods have complex mathematical calculations, and
60、also system feedback and system’s disturbations can not be measured momentary </p><p> Program algorithm for PLCs is given in Figure 8. The algorithm consists of two start options: one is working with recen
61、t parameters which are calculated before; other option is working with new parameters. In this option, program finds new PID parameters for system. Because of Ziegler-Nichols method is applicable for open-loop systems, p
62、rogram first cancels system feedback and waits the system response to settle. When the system output is reset, program records system’s momentary input and Then </p><p> If the step signal smaller than 10%,
63、 system parameters can not be determined reasonable. After applying the step signal, program waits until the system output to settle at the output value. When the system output is stable, program calculates PID parameter
64、s using Ziegler-Nichols process reaction method and sends them to PID parameter input. When PID parameters are loaded, program attaches system feedback and PID controller. Thus, system starts to work with PID controller.
65、 </p><p> To clarify, necessary steps are given in a sequence below:</p><p> Run the system in open-loop mode</p><p> Wait until the system output becomes stable</p><
66、p> Record system input and output</p><p> Apply a step input to system (larger than %10 of recent input)</p><p> Wait until the system output becomes stable</p><p> Calculate
67、 PID parameters and work with PID controller.</p><p> Adaptive Control</p><p> In everyday language, “to adapt” means to change a behavior to conform to new circumstances. Intuitively, an adap
68、tive controller is thus a controller that can modify its behavior in response to changes in the dynamics of the process and the character of the disturbances. </p><p> In section 3, the Ziegler Nichols proc
69、ess reaction method gave three constant parameters of PID controller; Kc, Ti and Td. However, some system responses can be unpredictable, and these PID parameters can not work efficiently. Also, adaptive control can help
70、 deliver both stability and good response. The approach changes the control algorithm coefficients in real time to compensate for variations in the system itself. In general, the controller periodically monitors the syst
71、em transfer function a</p><p> Adjusting Adaptive Algorithm to the Self-Tuning Program</p><p> Self – Tune parameters, Adaptive algorithm and PI-D controller are related with each other like i
72、n figure 10. As said before, derivative parameter directly goes to PI-D controller, gain and integral terms firstly go adaptive algorithm and then PI-D controller.</p><p> Conclusions</p><p>
73、In this article Adaptive PI-D controller - using Ziegler Nichols based Self Tuning method’s parameters- is presented and its application on a programmable logic controller is given. For this purpose first of all at the i
74、mplementation part industrial PID algorithm is used where PID’s derivative input is taken from system output and filtered, so high-frequency signals’ effect is minimized. Then, integral term is confirmed to obtain a more
75、 robust PID structure and finally the output of PID is limit</p><p> For implementing the developed algorithm a Siemens S7-400 CPU 412-2 DP PLC is selected as a controller due to its good performance and it
76、s developed structure. Afterwards the developed PLC algorithm is simulated on two second order systems. The results showed that Adaptive PI-D controller has a good performance on a large scale of ratio of industrial sys
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于Ziegler-Nichols參數(shù)整定方法的張力控制系統(tǒng)研究.pdf
- 自動(dòng)化專(zhuān)業(yè)畢業(yè)設(shè)計(jì)外文翻譯5
- 自動(dòng)化專(zhuān)業(yè)畢業(yè)設(shè)計(jì)外文翻譯1
- 自動(dòng)化專(zhuān)業(yè)畢業(yè)設(shè)計(jì)外文資料翻譯--catia v5 的自動(dòng)化
- 自動(dòng)化基于plc的門(mén)禁系統(tǒng)畢業(yè)設(shè)計(jì)
- 自動(dòng)化基于plc的門(mén)禁系統(tǒng)畢業(yè)設(shè)計(jì)
- 自動(dòng)化基于plc的門(mén)禁系統(tǒng)畢業(yè)設(shè)計(jì)
- 畢業(yè)設(shè)計(jì)plc自動(dòng)化冷庫(kù)的設(shè)計(jì)
- 外文翻譯---基于plc的自動(dòng)化制造系統(tǒng)
- 自動(dòng)化專(zhuān)業(yè)畢業(yè)設(shè)計(jì)外文翻譯--語(yǔ)音控制器
- 機(jī)械自動(dòng)化類(lèi)畢業(yè)設(shè)計(jì)外文翻譯--電子設(shè)計(jì)自動(dòng)化
- 電氣工程及其自動(dòng)化專(zhuān)業(yè)畢業(yè)設(shè)計(jì)外文翻譯模版
- 外文翻譯---基于plc的自動(dòng)化系統(tǒng)的遠(yuǎn)程診斷的設(shè)計(jì)
- 電氣自動(dòng)化專(zhuān)業(yè)畢業(yè)設(shè)計(jì)-- 基于plc的全自動(dòng)洗衣機(jī)控制系統(tǒng)
- 采用plc的自動(dòng)化制造系統(tǒng)畢業(yè)設(shè)計(jì)(論文)文獻(xiàn)翻譯
- 自動(dòng)化畢業(yè)設(shè)計(jì)---自動(dòng)化組合機(jī)床的plc控制系統(tǒng)設(shè)計(jì)
- 電氣自動(dòng)化畢業(yè)設(shè)計(jì)--- 基于plc的溫室大棚控制
- 自動(dòng)化專(zhuān)業(yè)畢業(yè)設(shè)計(jì)外文翻譯--現(xiàn)地控制單元在水電廠(chǎng)自動(dòng)化中的應(yīng)用
- 電氣專(zhuān)業(yè)畢業(yè)設(shè)計(jì)外文翻譯---電力系統(tǒng)自動(dòng)化
- 基于系統(tǒng)辨識(shí)的PID參數(shù)自整定方法研究.pdf
評(píng)論
0/150
提交評(píng)論