版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p> Process Planning and Concurrent Engineering</p><p> T. Ramayah and Noraini Ismail</p><p><b> ABSTRACT</b></p><p> The product design is the plan for the pr
2、oduct and its components and subassemblies. To convert the product design into a physical entity, a manufacturing plan is needed. The activity of developing such a plan is called process planning. It is the link between
3、product design and manufacturing. Process planning involves determining the sequence of processing and assembly steps that must be accomplished to make the product. In the present chapter, we examine processing planning
4、and several related</p><p> Process Planning </p><p> Process planning involves determining the most appropriate manufacturing and assembly processes and the sequence in which they should be a
5、ccomplished to produce a given part or product according to specifications set forth in the product design documentation. The scope and variety of processes that can be planned are generally limited by the available proc
6、essing equipment and technological capabilities of the company of plant. Parts that cannot be made internally must be purchased from outside v</p><p> Process planning is usually accomplished by manufacturi
7、ng engineers. The process planner must be familiar with the particular manufacturing processes available in the factory and be able to interpret engineering drawings. Based on the planner’s knowledge, skill, and experien
8、ce, the processing steps are developed in the most logical sequence to make each part. Following is a list of the many decisions and details usually include within the scope of process planning.</p><p> .In
9、terpretation of design drawings. The part of product design must be analyzed (materials, dimensions, tolerances, surface finished, etc.) at the start of the process planning procedure.</p><p> .Proces
10、s and sequence. The process planner must select which processes are required and their sequence. A brief description of processing steps must be prepared.</p><p> .Equipment selection. In genera
11、l, process planners must develop plans that utilize existing equipment in the plant. Otherwise, the component must be purchased, or an investment must be made in new equipment.</p><p> .Tools, dies, molds,
12、fixtures, and gages. The process must decide what tooling is required for each processing step. The actual design and fabrication of these tools is usually delegated to a tool design department and tool room, or an
13、 outside vendor specializing in that type of tool is contacted.</p><p> .Methods analysis. Workplace layout, small tools, hoists for lifting heavy parts, even in some cases hand and body motions must
14、be specified for manual operations. The industrial engineering department is usually responsible for this area.</p><p> .Work standards. Work measurement techniques are used to set time standards for
15、each operation.</p><p> .Cutting tools and cutting conditions. These must be specified for machining operations, often with reference to standard handbook recommendations.</p><p> Proces
16、s planning for parts</p><p> For individual parts, the processing sequence is documented on a form called a route sheet. Just as engineering drawings are used to specify the product design, route sheets are
17、 used to specify the process plan. They are counterparts, one for product design, the other for manufacturing.</p><p> A typical processing sequence to fabricate an individual part consists of: (1) a basic
18、process, (2) secondary processes, (3) operations to enhance physical properties, and (4) finishing operations. A basic process determines the starting geometry of the work parts. Metal casting, plastic molding, and rolli
19、ng of sheet metal are examples of basic processes. The starting geometry must often be refined by secondary processes, operations that transform the starting geometry (or close to final geometr</p><p> Once
20、 the geometry has been established, the next step for some parts is to improve their mechanical and physical properties. Operations to enhance properties do not alter the geometry of the part; instead, they alter physica
21、l properties. Heat treating operations on metal parts are the most common examples. Similar heating treatments are performed on glass to produce tempered glass. For most manufactured parts, these property-enhancing opera
22、tions are not required in the processing sequence.</p><p> Finally finish operations usually provide a coat on the work parts (or assembly) surface. Examples included electroplating, thin film deposition te
23、chniques, and painting. The purpose of the coating is to enhance appearance, change color, or protect the surface from corrosion, abrasion, and so forth. Finishing operations are not required on many parts; for example,
24、plastic molding rarely require finishing. When finishing is required, it is usually the final step in the processing sequence.</p><p> Processing Planning for Assemblies</p><p> The type of as
25、sembly method used for a given product depends on factors such as: (1) the anticipated production quantities; (2) complexity of the assembled product, for example, the number of distinct components; and (3) assembly proc
26、esses used, for example, mechanical assembly versus welding. For a product that is to be made in relatively small quantities, assembly is usually performed on manual assembly lines. For simple products of a dozen or so c
27、omponents, to be made in large quantities, aut</p><p> Process planning for assembly involves development of assembly instructions, but in more detail .For low production quantities, the entire assembly is
28、completed at a single station. For high production on an assembly line, process planning consists of allocating work elements to the individual stations of the line, a procedure called line balancing. The assembly line r
29、outes the work unit to individual stations in the proper order as determined by the line balance solution. As in process planning</p><p> Make or Buy Decision </p><p> An important question th
30、at arises in process planning is whether a given part should be produced in the company’s own factory or purchased from an outside vendor, and the answer to this question is known as the make or buy decision. If the comp
31、any does not possess the technological equipment or expertise in the particular manufacturing processes required to make the part, then the answer is obvious: The part must be purchased because there is no internal alter
32、native. However, in many cases, the </p><p> In our discussion of the make or buy decision, it should be recognized at the outset that nearly all manufactures buy their raw materials from supplies. A machin
33、e shop purchases its starting bar stock from a metals distributor and its sand castings from a foundry. A plastic molding plant buys its molding compound from a chemical company. A stamping press factory purchases sheet
34、metal either fro a distributor or direct from a rolling mill. Very few companies are vertically integrated in their pro</p><p> There are a number of factors that enter into the make or buy decision. One wo
35、uld think that cost is the most important factor in determining whether to produce the part or purchase it. If an outside vendor is more proficient than the company’s own plant in the manufacturing processes used to make
36、 the part, then the internal production cost is likely to be greater than the purchase price even after the vendor has included a profit. However, if the decision to purchase results in idle equipment a</p><p&
37、gt; Consider the following example make or Buy Decision. </p><p> The quoted price for a certain part is $20.00 per unit for 100 units. The part can be produced in the company’s own plant for $28.00. The c
38、omponents of making the part are as follows:</p><p> Unit raw material cost = $8.00 per unit</p><p> Direct labor cost =6.00 per unit </p><p> Labor overhead at 150%=9.00 per uni
39、t </p><p> Equipment fixed cost =5.00 per unit </p><p> ________________________________</p><p> Total =28.00 per unit </p><p> Should the component by bought or ma
40、de in-house ?</p><p> Solution: Although the vendor’s quote seems to favor a buy decision, let us consider the possible impact on plant operations if the quote is accepted. Equipment fixed cost of $5.00 is
41、an allocated cost based on investment that was already made. If the equipment designed for this job becomes unutilized because of a decision to purchase the part, then the fixed cost continues even if the equipment stand
42、s idle. In the same way, the labor overhead cost of $9.00 consists of factory space, utility, an</p><p> Make or buy decision are not often as straightforward as in this example. A trend in recent years, es
43、pecially in the automobile industry, is for companies to stress the importance of building close relationships with parts suppliers. We turn to this issue in our later discussion of concurrent engineering.</p><
44、;p> Computer-aided Process Planning </p><p> There is much interest by manufacturing firms in automating the task of process planning using computer-aided process planning (CAPP) systems. The shop-train
45、ed people who are familiar with the details of machining and other processes are gradually retiring, and these people will be available in the future to do process planning. An alternative way of accomplishing this funct
46、ion is needed, and CAPP systems are providing this alternative. CAPP is usually considered to be part of computer-aided man</p><p> .Process rationalization and standardization. Automated process plan
47、ning leads to more logical and consistent process plans than when process is done completely manually. Standard plans tend to result in lower manufacturing costs and higher product quality.</p><p> .Increas
48、ed productivity of process planner. The systematic approach and the availability of standard process plans in the data files permit more work to be accomplished by the process planners.</p><p> .Reduc
49、ed lead time for process planning. Process planner working with a CAPP system can provide route sheets in a shorter lead time compared to manual preparation.</p><p> .Improved legibility. Comput
50、er-prepared rout sheets are neater and easier to read than manually prepared route sheets.</p><p> .Incorporation of other application programs. The CAPP program can be interfaced with other applicati
51、on programs, such as cost estimating and work standards.</p><p> Computer-aided process planning systems are designed around two approaches. These approaches are called: (1) retrieval CAPP systems and (2) g
52、enerative CAPP systems .Some CAPP systems combine the two approaches in what is known as semi-generative CAPP.</p><p> Concurrent Engineering and Design for Manufacturing</p><p> Concurrent en
53、gineering refers to an approach used in product development in which the functions of design engineering, manufacturing engineering, and other functions are integrated to reduce the elapsed time required to bring a new p
54、roduct to market. Also called simultaneous engineering, it might be thought of as the organizational counterpart to CAD/CAM technology. In the traditional approach to launching a new product, the two functions of design
55、engineering and manufacturing engineering tend </p><p> Fig.(1). Comparison: (a) traditional product development cycle and (b) product development using concurrent engineering</p><p> By contr
56、ast, in a company that practices concurrent engineering, the manufacturing engineering department becomes involved in the product development cycle early on, providing advice on how the product and its components can be
57、designed to facilitate manufacture and assembly. It also proceeds with early stages of manufacturing planning for the product. This concurrent engineering approach is pictured in Fig.(1).(b). In addition to manufacturing
58、 engineering, other function are also involved in th</p><p> Concurrent engineering includes several elements: (1) design for several manufacturing and assembly, (2) design for quality, (3) design for cost,
59、 and (4) design for life cycle. In addition, certain enabling technologies such as rapid prototyping, virtual prototyping, and organizational changes are required to facilitate the concurrent engineering approach in a co
60、mpany.</p><p> Design for Manufacturing and Assembly</p><p> It has been estimated that about 70% of the life cycle cost of a product is determined by basic decisions made during product desig
61、n. These design decisions include the material of each part, part geometry, tolerances, surface finish, how parts are organized into subassemblies, and the assembly methods to be used. Once these decisions are made, the
62、ability to reduce the manufacturing cost of the product is limited. For example, if the product designer decides that apart is to be made of an alumi</p><p> Term used to describe such attempts to favorably
63、 influence the manufacturability of a new product are design for manufacturing (DFM) and design for assembly(DFA). Of course, DFM and DFA are inextricably linked, so let us use the term design for manufacturing and assem
64、bly (DFM/A). Design for manufacturing and assembly involves the systematic consideration of manufacturability and assimilability in the development of a new product design. This includes: (1) organizational changes and (
65、2) design pr</p><p> .Organizational Changes in DFM/A. Effective implementation of DFM/A involves making changes in a company’s organization structure, either formally or informally, so that closer in
66、teraction and better communication occurs between design and manufacturing personnel. This can be accomplished in several ways: (1)by creating project teams consisting of product designers, manufacturing engineers, and o
67、ther specialties (e.g. quality engineers, material scientists) to develop the new product design; (2</p><p> .Design Principles and Guidelines. DFM/A also relies on the use of design principles and gu
68、idelines for how to design a given product to maximize manucturability and assembility. Some of these are universal design guidelines that can be applied to nearly any product design situation. There are design principle
69、s that apply to specific processes, and for example, the use of drafts or tapers in casted and molded parts to facilitate removal of the part from the mold. We leave these more process-spe</p><p> The guide
70、lines sometimes conflict with one another. One of the guidelines is to “simplify part geometry, avoid unnecessary features”. But another guideline in the same table states that “special geometric features must sometimes
71、be added to components” to design the product for foolproof assembly. And it may also be desirable to combine features of several assembled parts into one component to minimize the number of parts in the product. In thes
72、e instances, design for part manufacture is in conf</p><p> 工藝規(guī)程制訂與并行工程</p><p> T. Ramayah and Noraini Ismail</p><p><b> 摘要</b></p><p> 產(chǎn)品設計是用于產(chǎn)品,及它的部件裝
73、配的計劃。為了把產(chǎn)品設計轉換成一個實際物體,這需要一個制造計劃。而制訂一個這樣的計劃的行動就叫做工藝規(guī)程制訂。它是產(chǎn)品設計和制造之間的連接,工藝規(guī)程制訂包括決定加工順序和制造產(chǎn)品所必須完成的裝配步驟。在以下文章中,我們將解釋工藝規(guī)程制訂和他的一些相關主題文章開始,我們應該區(qū)別在下列文章中被反復提到的工藝規(guī)程制訂和生產(chǎn)計劃。工藝規(guī)程制訂與如何制造產(chǎn)品和它的零件等工程技術問題有關,制造零件和裝配產(chǎn)品需要什么樣的設備和工具?工藝規(guī)程制訂與產(chǎn)品
74、制造物流管理有關系。它在工藝規(guī)程制訂后面與原料分類及獲得滿足制造充分數(shù)量產(chǎn)品要求的資源有關。</p><p><b> 工藝規(guī)程制訂</b></p><p> 工藝規(guī)程制訂包括決定最適當?shù)闹圃旒把b配步驟和順序,在這些順序和步驟中他們必須根據(jù)所提出的詳細的設計說明書規(guī)范完成給定零件或產(chǎn)品制造。 能夠被計劃的工藝范圍和多樣性通常由于公司車間可用設備和技術能力而受到限制
75、。在公司內部不能夠制造的零件必須到外部市場購買,工藝規(guī)程制訂所提及的工藝選擇同樣也受到詳細設計資料的限制,我們稍后將會回到這一點。</p><p> 工藝規(guī)程制訂通常是由制造工程師完成的,工藝制訂者必須熟悉工廠中詳細可用的制造流程并且能夠說明工程圖?;谥朴喺叩闹R、技術和經(jīng)驗,用于制造每個零件的工藝步驟以最合乎邏輯的順序被發(fā)展制訂。下列各項是在工藝規(guī)程制訂范圍里的許多決定和詳細資料:</p>&
76、lt;p> .設計圖的說明. 在工藝規(guī)程制訂的開始,產(chǎn)品設計的這一部分( 材料、尺寸、公差、表面處理等等)必須進行分析。</p><p> .工藝和順序. 工藝制訂者必須選擇哪一個工藝是必需的及必需工藝的序列。此外還必須準備好一個簡短的工藝步驟描述。</p><p> .設備選擇. 大體上,工藝制訂者必須逐步展開利用工廠現(xiàn)有機器的計劃。另外,
77、組件必須被購買或在新設備上的投資必須被制定。</p><p> .工具、沖模、鑄模、夾具、量具. 工藝必須決定每個工序需要什么工具,這些工具的實際設計和制造通常通過委派工具設計部門和工具庫或者聯(lián)系專攻那種工具制造的外面廠商來完成。</p><p> .方法分析. 車間規(guī)劃,小工具,提升重物的提升間。甚至在一些人工操作情景中的肢體動作也被指定。</p>
78、<p> .操作步驟. 工作測量技術被用來為每個操作設定時間標準。</p><p> .切削工具和切削條件. 這些必須對加工操作通過推薦標準手冊來進行詳細說明。</p><p><b> 零件工藝規(guī)程制訂</b></p><p> 對于單個零件,加工順序通過一種被稱為進路表的表格來進行文件證明備份。
79、就如工程圖被用于詳細說明設計產(chǎn)品一樣,進路表被用于詳細說明工藝計劃。他們是類似的,一個用于產(chǎn)品設計,另一個用于制造。</p><p> 制造單個零件的典型加工順序包括:(1) 一個基本工序 (2) 二級工序 (3) 提高物質特性工序和(4) 最后工序。一個基本工序決定了工件的起始造型。金屬鑄件、塑料成型、金屬精煉是基本工序中的實例。起始造型常常必須通過改變起始造型操作(或者接近于最終造型)的二級工序來精制。二級
80、工序習慣于和基本工序一起提供起始造型,當砂型鑄造是基本工序,車加工通常是二級工序。當軋鋼廠制造金屬片是基本工序,沖壓操作像沖裁和彎曲通常是二級工序。當塑料注入成型是基本工序時,二級工序通常是不必要的,因為他的大多數(shù)幾何特征制造通過別的方式如成型制造來完成。塑料成型和其他操作的二級工序被稱為凈成型工序的并發(fā)二級工序,需要一些但并不多的二級工序的操作就是所提到的近似成型工序。許多有印象的摸鍛件就是這一類,這類零件能夠經(jīng)常在鍛造(初級工序)階
81、段被成型,因此減少了必要的加工(二級工序)。</p><p> 一旦模型被建立,許多零件的下一步是改良它們的機械物理性能。提高特性工序并不改變零件模型,然而,它卻能改變零件的物理特性。金屬零件的熱處理操作就是最普通的實例。類似的如玻璃通過熱處理來制造鋼化玻璃,對于大多數(shù)零件的制造來說,這些特性加強工序在加工工序中并不需要。</p><p> 最后工序通常對零件(或裝配體)的表面提供一個
82、涂層。例如電鍍、薄膜沉積技術、涂漆。表面處理的目的是改善外觀,改變顏色或者表面保護防止腐蝕和磨損等等。在很多零件中最后工序是并不需要的。例如:塑料成型就很少需要最后程序。當必須需要最后程序,他通常是加工順序的最后一步。</p><p><b> 裝配工藝規(guī)程制訂</b></p><p> 一個既定產(chǎn)品的典型裝配方法由以下因素決定的:(1)預期產(chǎn)品數(shù)量(2)裝配產(chǎn)品
83、的復雜性。例如:不同組件的數(shù)量和(3)常用裝配工藝。例如:機械定位焊接、對于小數(shù)量產(chǎn)品,通常在人工裝配線上進行裝配。對于大量制造的一打或這樣組件的簡單零件,要采用適當?shù)淖詣踊b配線。無論如何這里有一個工作必須被完成的優(yōu)先順序,這個優(yōu)先需求經(jīng)常用一個優(yōu)先表來進行圖表描繪。</p><p> 裝配工藝規(guī)程制訂包括裝配指令的發(fā)展,但是更詳細地對于小批量生產(chǎn)。在一個崗位完成整個裝配,對于一個裝配線上的大批量生產(chǎn),工藝規(guī)
84、程制訂由一種分配工作條件到裝配線個別工位并被叫做人工投入線性平衡法的程序組成。這種裝配線按照裝配線平衡解決方案決定的順序發(fā)送工作單元到個別工位,在個別組成,任意工具或夾具的工藝規(guī)程制訂時,一條裝配線的決定、設計和制造必須被完成,并且工作站的必須被列出來。</p><p><b> 制造或購買決定</b></p><p> 在工藝制定過程中出現(xiàn)的一個重大問題是一個特
85、定零件應該在公司內部的工廠內生產(chǎn)還是從外部銷售商處購買,并且這個問題的答案被認為是制造或購買決定。如果公司沒有技術設備或制造零件所必須的詳細制造工藝中的專門技術,那么答案就很明顯了。因為沒有其他選擇零件必須購買。然而,在很多例子中零件既可以在利用現(xiàn)有設備在內部制造或者可以從外部擁有相似制造能力的生產(chǎn)銷售商處購買。</p><p> 在我們的關于制造或購買的決定的討論中,他應該認識到在開始幾乎所有的制造者從供應商
86、那里購買原料。一個機械加工廠從一個金屬經(jīng)銷商購買他的起動柄原料或從一個鑄造廠購買他的砂型鑄件。一個塑料成型廠從一個化工廠購買他的模塑料。一個沖壓廠可以去經(jīng)銷商或直接從軋鋼廠購買金屬片。很少的公司能夠在操作中從原料一直進行垂直整合,這看來至少購買一些也許在他的工廠可以另外制造的零件是合理的。也有可能為公司使用的每一個組成要求制造或購買決定。</p><p> 這里有許多影響制造或購買決定的因素,一個人可能認為成本
87、是決定是購買還是制造零件的最重要的因素。如果一個外部經(jīng)銷商比公司工廠更精通于制造零件的工藝,因而公司內部生產(chǎn)成本可能比經(jīng)銷商賺取成本后的價格還要高??墒?,如果購買決定導致公司工廠設備和勞動的閑置,購買零件的表面優(yōu)勢就會喪失??紤]以下例子制造或購買決定。</p><p> 為一個特定零件被引述的價格是100個單位的每單位$20.00。制造零件的成分如下所示:</p><p> 單位原料成
88、本=每單位$8.00</p><p> 直接勞動成本=每單位$6.00</p><p> 勞動加班150%=每單位$9.00</p><p> 設備修理成本=每單位$5.00</p><p> ___________________</p><p> 總計=每單位$28.00</p><p
89、> 這個組成應該被購買還是在內部制造 ?</p><p> 解決方案:盡管經(jīng)銷商的引證似乎支持購買決定,讓我們來考慮如果引證被接受可能在生產(chǎn)操作中的沖突。$5.00設備維修成本是已經(jīng)被制定的投資成本,如果設備設計因為購買零件的決定而變的沒有利用價值,那么這個固定成本仍然繼續(xù)盡管設備閑置著。同樣,如果零件被購買由工廠空間,效用和勞動成本組成的$9.00的勞動間接成本仍然繼續(xù)。通過這種推理,如果應該已用于生
90、產(chǎn)零件的設備閑置的購買決定并不是一個好決定因為他可能花費公司將近$20.00+$5.0+$9.00=$34.0每單元。另一方面,如果正在討論的設備可以被用于生產(chǎn)其他零件并且內部生產(chǎn)成本低于外部聯(lián)系報價,那么一個購買決定就是一個好決定。</p><p> 制造或購買決定并不像這個例子中的那樣直接。這幾年的一個趨勢,尤其在汽車工業(yè),公司和零件供應者建立緊密關系。由此我們將引出并行工程。</p><
91、;p> 在計劃操作方面制造公司有很大興趣利用計算機輔助工藝(CAPP)系統(tǒng)來完成。</p><p> 那些熟悉加工詳細資料和其他工藝的工廠培訓的工人逐漸退休,并且這些人在將來工藝制訂的過程中是非常有用的。一種可選擇的用于完成這種功能的方式是必需的,CAPP 提供了這種選擇。CAPP經(jīng)常被看作是計算機輔助制造(CAM)的一部分。然而這種趨向意味著CAM是一系列系統(tǒng)。事實上,當CAD和計算機輔助設計協(xié)同作用
92、創(chuàng)造了一個CAD/CAM系統(tǒng)。在這樣一個系統(tǒng)中,CAPP成為設計和制造之間的直接聯(lián)結。來自計算機輔助工藝的優(yōu)點包括以下幾點:</p><p> .工藝合理化和標準化. 自動工藝規(guī)程制訂比完全用手工編制工藝產(chǎn)生的更合理化和一致化。標準設計趨向產(chǎn)生低成本和高生產(chǎn)質量。</p><p> .增強工藝制訂者的生產(chǎn)力. 在數(shù)據(jù)文件中的系統(tǒng)方法和標準加工設計的實用性使工藝制
93、訂者可完成更多的工作。</p><p> .減少工藝規(guī)程的制訂時間. 與手工準備相比,利用CAPP系統(tǒng)的工藝制訂者可以在較短的時間內準備好進路表。</p><p> .改良異讀性. 計算機準備的進路表比手工準備的進路表更容易簡潔。</p><p> .結合其他應用軟件. CAPP 系統(tǒng)可以在界面上與其它應用軟件結合,象成本估
94、計和工作標準。</p><p> 計算機輔助工藝圍繞著兩個路徑來設計,這兩個路徑被叫做:(1)CAPP檢索系統(tǒng)和(2)CAPP生成系統(tǒng)。許多CAPP系統(tǒng)結合這兩種路徑而被稱為生成檢索CAPP系統(tǒng)。</p><p> 制造業(yè)的并行工程和設計</p><p> 并行工程引用一種常用于產(chǎn)品發(fā)展的路徑,通過它使工程設計功能、工程制造功能和其他功能綜合起來以減少一種新產(chǎn)
95、品投放市場所需要的共用時間,也被稱為并發(fā)工程,他可能被認為是CAD/CAM技術的類似組織版本,按照傳統(tǒng)路徑來使一件產(chǎn)品投放市場。如圖(1)a所示,工程設計功能和工程制造功能這兩種功能是分開并且連續(xù)的,產(chǎn)品設計部門開展一項新的設計有時很少考慮到公司的制造能力,也很少有機會能夠讓制造工程師來提供如何使設計更容易制造的一些建議。他好像消除了在設計和制造之間的一堵墻,當設計部門完成設計,他投擲工程圖和說明書越過這面墻,并且那時工藝規(guī)程制訂也開始
96、了。</p><p> 圖(1) 比較 : (a) 傳統(tǒng)產(chǎn)品發(fā)展周期和 (b) 并行產(chǎn)品的發(fā)展周期</p><p> 通過比較,實行并行工程的公司,工程制造部門在早期就參與到產(chǎn)品發(fā)展周期。為如何使產(chǎn)品和他的組成能夠被設計的更適于制造提供建議。他同樣為產(chǎn)品提供制造計劃繼續(xù)進行的早期準備,這種并行工程的路徑在圖(1)b中被描繪出。除了工程制造以外其他功能同樣被包括在產(chǎn)品發(fā)展周期
97、中,如質量工程、制造部門、后勤服務、市場供應評定組成和一些情況下將使用這些產(chǎn)品的消費者。在產(chǎn)品發(fā)展階段的所有這些功能不僅能改善新產(chǎn)品的功能和性能,同時也能改善他的可造性、自檢性、易測性、服務能力和可維護性。通過早期功能改善,因為在最終產(chǎn)品設計之后的回顧太晚以至于不能對設計進行便利的修改的不利因素的消除,使產(chǎn)品發(fā)展周期的持續(xù)期大大減少。</p><p> 并行設計包含以下因素:(1)一些制造和裝配設計(2)質量設
98、計(3)成本設計和(4)生命周期設計。另外,像快速成型、虛擬制造、和組織轉變等輔助技術需要被用來促進公司的并行工程。</p><p><b> 制造和裝配設計</b></p><p> 據(jù)估計一件產(chǎn)品的70%的生命周期成本是由在產(chǎn)品設計時所做的基本決定所決定的,這些設計決定包括每個零件的材料、零件模型、公差、表面處理、零件是如何被組織裝配的和常用裝配方法。一旦這些
99、決定被指定,減少產(chǎn)品制造成本的能力就會被限制。例如,如果產(chǎn)品設計者決定用鋁砂型鑄造法制造一個分開零件,但是這個零件的工藝特性只能通過加工來完成(如螺紋孔和配合公差),制造工程師沒有選擇的余地,只能按照先砂型鑄造在加工的方法來達到既定要求。在這個例子中,用一個在單獨步驟所需要的塑料模制品也許是一個較好的決定。因此,當產(chǎn)品設計展開時給制造工程師一個忠告設計者的機會對產(chǎn)品的順利可造性是非常重要的。</p><p>
100、這種被用于嘗試描述順利改變一件新產(chǎn)品的可造性的條件是制造設計(DFM)和裝配設計(DFA)。當然,DFM和DFA是緊密相連的,因此讓我們用制造和裝配設計(DFM/A)的形式來表達。制造和裝配設計包括在一件新產(chǎn)品中的可造性和可裝配性的綜合考慮,這包括: (1)組織變化和(2)設計原理和指導方針。</p><p> .在DFM/A中的組織變化. DFM/A的有效執(zhí)行包括公司組織機構的正式或非正式的變化,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--藝規(guī)程制訂與并行工程
- 機械設計外文翻譯---工藝規(guī)程制訂與并行工程
- 機械設計外文翻譯---工藝規(guī)程制訂與并行工程.doc
- 工藝規(guī)程制訂與并行工程.doc
- 工藝規(guī)程制訂與并行工程.doc
- 外文翻譯--工序制訂與并行工程
- 外文翻譯---工序制訂與并行工程
- 工藝規(guī)程制訂與并行工程機械外文文獻翻譯、中英文翻譯、外文翻譯
- 外文翻譯-工序制訂與并行工程.doc
- 外文翻譯-工序制訂與并行工程.doc
- 【041】工藝規(guī)程制訂與并行工程【中文8200字】
- 【041】工藝規(guī)程制訂與并行工程【中文8200字】
- 【041】工藝規(guī)程制訂與并行工程【中文8200字】
- 【041】工藝規(guī)程制訂與并行工程【中文8200字】.doc
- 【041】工藝規(guī)程制訂與并行工程【中文8200字】.doc
- 【041】工藝規(guī)程制訂與并行工程【中文8200字】.doc
- 機械專業(yè)畢業(yè)設計外文翻譯--工藝規(guī)程制訂
- 【040】工序制訂與并行工程【中文6700字】
- 【040】工序制訂與并行工程【中文6700字】
- 毛坯圖設計與工藝規(guī)程制訂.doc
評論
0/150
提交評論