版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、青島大學(xué)畢業(yè)設(shè)計(jì)英文資料翻譯第1頁(yè)imageedgeexaminationalgithmAbstractDigitalimageprocessingtookarelativequiteyoungdisciplineisfollowingthecomputertechnologyrapiddevelopmentdaybydayobtainsthewidespreadapplication.Theedgetooktheimageonekin
2、dofbasicacteristicinthepatternrecognitiontheimagedivisiontheimageintensificationaswellastheimagecompressionsooninthedomainhasamewidespreadapplication.Imageedgedetectionmethodmanyvariedinwhichbasedonbrightnessalgithmisstu
3、diesthetimetobemostlongthetheydevelopsthematurestmethoditmainlyisthroughsomedifferenceoperatcalculatesitsgradientbasedonimagebrightnessthechangethusexaminestheedgemainlyhasRobertLaplacianSobelCannyoperatssoonLOG。Firstasa
4、wholeintroduceddigitalimageprocessingtheedgedetectionsurveyhasenumeratedseveralkindofatpresentcommonlyusededgedetectiontechnologythealgithmstwokindstouseVisualtheClanguageprogrammingrealizationthroughwithdrawstheimageres
5、ulttotwoalgithmsthecomparisontheresearchdiscussestheirgoodbadpoints.FewdInimageprocessingasabasicacteristictheedgeoftheimagewhichiswidelyusedintherecognitionsegmentationintensificationcompressoftheimageisoftenappliedtohi
6、ghleveldomain.Therearemanykindsofwaystodetecttheedge.Anywaytherearetwomaintechniques:oneisclassicmethodbasedonthegraygradeofeverypixeltheotheroneisbasedonwaveletitsmultiscaleacteristic.Thefirstmethodwhichisgotthelongestr
7、esearchgettheedgeaccdingtothevarietyofthepixelgray.ThemaintechniquesareRobertLaplaceSobelCannyLOGalgithm.ThesecondmethodwhichisbasedonwavelettransfmutilizestheLipschitzexponentacterizationofthenoisesingularsignalthenachi
8、evethegoalofremovingnoisedistillingtherealedgelines.Inrecentyearsanewkindofdetectionmethodwhichbasedonthephaseinfmationofthepixelisdeveloped.Weneedhypothesizenothingaboutimagesinadvance.Theedgeiseasytofindinfrequencydoma
9、in.It’sareliablemethod.Inchapteronewegiveanoverviewoftheimageedge.inchaptertwosomeclassicdetectionalgithmsareintroduced.Thecauseofpositionalerrisanalyzedthendiscussedameprecisionmethodinedgeientation.Inchapterthreewavele
10、ttheyisintroduced.Thedetectionmethodsbasedonsamplingwavelettransfmwhichcanextractmaimedgeoftheimageeffectivelynonsamplingwavelettransfmwhichcanremaintheoptimumspatialinfmationarerecommendedrespectively.Inthelastchapterof
11、thisthesisthealgithmbasedonphaseinfmationisintroduced.UsingthelogGabwavelettwodimensionfilterisconstructedmanykindsofedgesaredetectedincludingMachBwhichindicatesitisaoutstingbiosimulationmethod。Mayallthewkinthispaperisof
12、somevaluetoresearchapplicationsofimageedgedetection.FirstFirstchapterchapterintroductionintroduction1.11.1imageimageedgeedgeexaminationexaminationintroductionintroduction青島大學(xué)畢業(yè)設(shè)計(jì)英文資料翻譯第3頁(yè)thistothegoaldivisiontherecogniti
13、onsoonfollowingprocessingtobringtheenmousconvenience.Generallyspeakingtheabovemethodallisthewkwhichdoesbasedontheimageluminanceinfmation。Inthemultitudinousscientificresearchwkerunderhasobtainedtheverygoodeffectdiligently
14、.Butbecausetheimageedgereceivesphysicalconditionsoontheilluminationinfluencesquitetobebigaboveoftenenablesmanytohaveacommonshtcomingbasedonbrightnessedgedetectionmethodthatistheedgeisnotcontinualdoesnotsealup.Consideredt
15、hephaseinfmationintheimageimptanceaswellasitsstableacteristiccausesusingthephaseinfmationtocarryontheimageryprocessingintonewresearchtopic。Inthispapersoonintroducesonekindbasedonthephaseimageacteristicexaminationmethodph
16、aseunifmmethod.ItisnotusestheimagetheluminanceinfmationbutisitsphaseacteristicnamelysuppositionimageFouriercomponentphasemostconsistentspotachievementacteristicpoint.Notonlyitcanexaminebrightnessacteristicssoonstepacteri
17、sticlineacteristicmeovercanexamineMachbeltphenomenonwhichproducesasaresultofthehumanvisionsensationacteristic.Becausethephaseunifmitydoesnotneedtocarryonanysuppositiontotheimageacteristictypetherefeithastheverystrongvers
18、atility。1.21.2imageimageedgeedgedefinitiondefinitionTheimagemajitymaininfmationallexistsintheimageedgethemainperfmanceftheimagepartialacteristicdiscontinuityisintheimagethegradationchangequitefierceplacealsoisthesignalwh
19、ichweusuallysaidhasthestrangechangeplace。Thestrangesignalthegradationchangewhichmovestowardsalongtheedgeisfierceusuallywedividetheedgefthestepshapetheroofshapetwokindoftypes(asshowninFigure11).Inthestepedgetwosidegreylev
20、elshavetheobviouschangeButtheroofshapeedgeislocatedthegradationincreasethereducedintersectionpoint.Mayptraytheperipheralpointinmathematicsusingthegradationderivativethechangetothestepedgetheroofshapeedgeasksitsstepthesec
21、ondtimederivativeseparately。Toanedgehasthepossibilitysimultaneouslytohavethestepthelineedgeacteristic.FexampleonasurfacechangesfromaplanetothenmaldirectiondifferentanotherplanecanproducethestepedgeIfthissurfacehastheedge
22、scnerswhichtheregularreflectionacteristicalsotwoplanesfmquitetobesmooththenwksaswhenedgescnerssmoothsurfacenmalaftermirrsurfacereflectionangleasaresultoftheregularreflectioncomponentcanproducethebrightlightstripontheedge
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- SAR圖像邊緣檢測(cè)算法研究.pdf
- 圖像邊緣檢測(cè)算法的研究.pdf
- 彩色圖像邊緣檢測(cè)算法研究.pdf
- 生物圖像邊緣檢測(cè)算法的研究.pdf
- 圖像邊緣檢測(cè)算法的比較研究.pdf
- 顱骨圖像的邊緣檢測(cè)算法研究.pdf
- 基于BLACKFIN的圖像邊緣檢測(cè)算法.pdf
- 灰度圖像邊緣檢測(cè)算法的性能評(píng)價(jià).pdf
- 數(shù)字圖像邊緣檢測(cè)算法研究與實(shí)現(xiàn)
- 邊緣檢測(cè)外文翻譯--一個(gè)索貝爾圖像邊緣檢測(cè)算法描述
- 爐膛火焰圖像增強(qiáng)及其邊緣檢測(cè)算法.pdf
- 基于CUDA的Canny圖像邊緣檢測(cè)算法.pdf
- 高溫物體的圖像邊緣檢測(cè)算法研究.pdf
- 邊緣檢測(cè)外文翻譯--一個(gè)索貝爾圖像邊緣檢測(cè)算法描述
- 邊緣檢測(cè)外文翻譯--一個(gè)索貝爾圖像邊緣檢測(cè)算法描述
- 畢業(yè)論文-圖像邊緣檢測(cè)算法的分析實(shí)現(xiàn)
- 基于相位信息的圖像邊緣檢測(cè)算法研究.pdf
- 基于梯度算子的圖像邊緣檢測(cè)算法研究.pdf
- 邊緣檢測(cè)外文翻譯--一個(gè)索貝爾圖像邊緣檢測(cè)算法描述.doc
- 數(shù)字圖像邊緣檢測(cè)算法及畸變校正算法研究.pdf
評(píng)論
0/150
提交評(píng)論