版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、智能配電網(wǎng)是目前電力系統(tǒng)界研究的熱點(diǎn),而高級(jí)配電運(yùn)行自動(dòng)化和高級(jí)量測(cè)體系是智能配電網(wǎng)建設(shè)過(guò)程中的重要技術(shù),也是先行技術(shù)。配電網(wǎng)單相接地故障自動(dòng)選線(xiàn)技術(shù)是高級(jí)配電運(yùn)行自動(dòng)化技術(shù)中的重點(diǎn)和難點(diǎn)問(wèn)題,至今沒(méi)有得到很好的解決;電能質(zhì)量擾動(dòng)自動(dòng)識(shí)別技術(shù)是構(gòu)建高級(jí)量測(cè)體系中電能質(zhì)量監(jiān)測(cè)系統(tǒng)的重要內(nèi)容。同時(shí),配電網(wǎng)故障選線(xiàn)和電能質(zhì)量擾動(dòng)識(shí)別的準(zhǔn)確率直接影響了配電網(wǎng)供電可靠性、連續(xù)性和供電質(zhì)量。
本文結(jié)合模式識(shí)別和信息融合技術(shù)對(duì)二者進(jìn)行研
2、究,致力于提高配電網(wǎng)故障選線(xiàn)和電能質(zhì)量擾動(dòng)識(shí)別的正確率,以提高配網(wǎng)供電的可靠性,改善其供電質(zhì)量。系統(tǒng)闡述了量子神經(jīng)網(wǎng)絡(luò)(quantum neural network,QNN)模式識(shí)別技術(shù)和DS證據(jù)理論(Dempster-Shafer evidence theory,DS)信息融合技術(shù)的基本原理和數(shù)學(xué)描述,在此基礎(chǔ)上構(gòu)建了基于量子神經(jīng)網(wǎng)絡(luò)和DS證據(jù)理論(QNN-DS)模式識(shí)別方法的體系結(jié)構(gòu),介紹了其實(shí)現(xiàn)流程,分析了QNN和DS結(jié)合后在模式
3、識(shí)別方面所表現(xiàn)出的優(yōu)異性能。給出了基于QNN-DS模式識(shí)別方法的配電網(wǎng)故障選線(xiàn)方案。利用快速傅立葉變換(fast Fourier transform,F(xiàn)FT)和小波包變換(wavelet packet transform,WPT)從零序電流信號(hào)中提取基波、五次諧波、暫態(tài)三種故障特征來(lái)訓(xùn)練和測(cè)試三個(gè)量子神經(jīng)網(wǎng)絡(luò),然后采用DS證據(jù)理論對(duì)各個(gè)神經(jīng)網(wǎng)絡(luò)的輸出結(jié)果進(jìn)行決策級(jí)融合,得到綜合選線(xiàn)結(jié)果。大量仿真結(jié)果表明:QNN比改進(jìn)的BP神經(jīng)網(wǎng)絡(luò)(ba
4、ck propagation neural network,BPNN)在訓(xùn)練和測(cè)試過(guò)程中表現(xiàn)出更好的收斂性能和模式識(shí)別能力,基于QNN-DS的配電網(wǎng)故障選線(xiàn)方法能有效地融合多種故障特征判據(jù),具有更好的容錯(cuò)性和魯棒性,提高了故障選線(xiàn)的正確率,且不受系統(tǒng)接地方式、故障距離、合閘角、過(guò)渡電阻等因素的影響。
對(duì)電能質(zhì)量擾動(dòng)信號(hào)識(shí)別的特點(diǎn)和關(guān)鍵問(wèn)題進(jìn)行了分析,提出將QNN-DS模式識(shí)別方法應(yīng)用到電能質(zhì)量擾動(dòng)信號(hào)識(shí)別中來(lái)。建立了十種常
5、見(jiàn)的電能質(zhì)量擾動(dòng)信號(hào)模型,基于幅值、擾動(dòng)時(shí)間、信噪比等信號(hào)參數(shù)隨機(jī)產(chǎn)生了1000組擾動(dòng)數(shù)據(jù)樣本。利用離散小波變換(discrete wavelet transform,DWT)、小波包變換和S變換從原始擾動(dòng)信號(hào)中分別提取一組特征向量,利用這三組特征量對(duì)三個(gè)QNN進(jìn)行訓(xùn)練和測(cè)試,結(jié)果表明三類(lèi)特征量都能取得較好的分類(lèi)效果,并且表現(xiàn)出了各自的優(yōu)缺點(diǎn),在此基礎(chǔ)上通過(guò)與改進(jìn)BPNN的對(duì)比,進(jìn)一步驗(yàn)證了QNN的收斂性能和模式識(shí)別能力優(yōu)于BPNN的結(jié)
6、論。利用DS證據(jù)理論對(duì)三類(lèi)特征量QNN輸出結(jié)果進(jìn)行決策級(jí)融合,結(jié)果顯示融合后的分類(lèi)精度更高,并在一定程度上克服了錯(cuò)誤信息的不利影響。將QNN-DS的分類(lèi)結(jié)果與BPNN-DS、概率神經(jīng)網(wǎng)絡(luò)-選舉決策級(jí)融合方法(Probabilistic neural network withvoting rules,PNN-VR)和單QNN的特征級(jí)融合方法進(jìn)行對(duì)比分析,結(jié)果該方法取得了最高的分類(lèi)精度。仿真分析表明基于QNN-DS的電能質(zhì)量擾動(dòng)識(shí)別方法能夠
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 配電網(wǎng)電壓暫降檢測(cè)與擾動(dòng)源識(shí)別方法研究.pdf
- 泰達(dá)配電網(wǎng)故障選線(xiàn)方法與裝置研究.pdf
- 基于免疫聚類(lèi)的配電網(wǎng)故障分類(lèi)識(shí)別方法研究.pdf
- 基于廣義S變換的配電網(wǎng)故障選線(xiàn)與定位方法研究.pdf
- 配電網(wǎng)故障選線(xiàn)系統(tǒng)與故障定位方法的研發(fā).pdf
- 基于多頻帶分析的配電網(wǎng)故障選線(xiàn)方法研究.pdf
- 配電網(wǎng)線(xiàn)路高阻故障在線(xiàn)識(shí)別方法研究.pdf
- 基于模糊神經(jīng)網(wǎng)絡(luò)的配電網(wǎng)故障選線(xiàn)方法研究.pdf
- 配電網(wǎng)風(fēng)險(xiǎn)評(píng)估與故障選線(xiàn)技術(shù)的研究
- 中壓配電網(wǎng)故障選線(xiàn)研究.pdf
- 基于小波相關(guān)分析的配電網(wǎng)故障選線(xiàn)方法的研究.pdf
- 油田配電網(wǎng)故障選線(xiàn)技術(shù)研究.pdf
- 基于ELM信息融合的智能配電網(wǎng)故障選線(xiàn).pdf
- 基于證據(jù)理論的配電網(wǎng)故障選線(xiàn)的研究與實(shí)現(xiàn).pdf
- 配電網(wǎng)風(fēng)險(xiǎn)評(píng)估與故障選線(xiàn)技術(shù)的研究.pdf
- 基于HHT與分形維數(shù)的配電網(wǎng)故障選線(xiàn)研究.pdf
- 配電網(wǎng)多諧波源識(shí)別方法的研究.pdf
- 配電網(wǎng)單相接地故障選線(xiàn)與定位方法的研究.pdf
- 中低壓配電網(wǎng)故障選線(xiàn)的研究.pdf
- 配電網(wǎng)絡(luò)諧振接地故障選線(xiàn)技術(shù)的研究.pdf
評(píng)論
0/150
提交評(píng)論