版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、廣西師范大學(xué)碩士學(xué)位論文粒子群算法在離散優(yōu)化問(wèn)題中的研究姓名:熊磊申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):計(jì)算機(jī)軟件與理論指導(dǎo)教師:王強(qiáng)20060401Study of Study of Particle Swarm Optimization Particle Swarm Optimizationin in Discrete iscrete Optimization ptimization Problem roblemAuthor:Lei Xiong;
2、 tutor:Qiang Wang; specialty:Computer Software & Theory;Research direction:Database System; Grade:2003Optimization is an important branch of mathematics and a young subject which is extensively used, andit aims at ch
3、oosing the optimum one from many candidate schemes to solve a practical problem. Manyscientific, engineering and economic problems need the optimization of a set of parameters with the aim ofminimizing or maximizing the
4、objective function. For example, how to choose the parameter in theengineering design can make the design scheme satisfy the need and decrease the cost, and how to allocatethe limit resource can make the design scheme sa
5、tisfy the need and get better economic benefit. Optimizationexits in all kinds of fields of human activities.The application of optimization methods is very extensive, and it involves a lot of problems and theseproblems
6、have different characteristics. According to different principles, they can be divided into differentclasses. For example, according to the value type of the decision- making variable, they can be divided intotwo classes
7、, function optimization problem and combination optimization problem (namely, discreteoptimization problem). The discrete optimization problem is an important optimization problem, and with thedevelopment of computer sci
8、ence, the science of the management and the technology of the modernizedproduce, it is getting more and more attention by the subjects of operational research, applicationsmathematics, computer science and management sci
9、ence. Since many years, people are trying to look forefficient algorithms to solve the combination problem, and many efficient algorithms have been proposed,but NP problem is still a science difficulty problem in the 21c
10、entury, and it is not solved in the complexityfield of the theory informatics yet.Modern optimization methods such as artificial neural network, tabu search, genetic algorithm and antcolony algorithm etc., have shown cap
11、abilities of finding optimal solutions to many real- word complexproblems within a reasonable amount of time. These methods have forged close ties with neural science,artificial intelligence, statistical mechanics, and b
12、iology evolution etc., some of them are called intelligentoptimization algorithms, such as genetic algorithm and ant colony algorithm.Recently, particle swarm optimization (PSO) algorithm has been gradually attracted mor
13、e attention overanother intelligent algorithm .PSO was brought forward by Dr. Eberhart and Dr. Kenney in 1995. It was apopulation based stochastic method motivated by the social behavior of bird flock. PSO shares manysim
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 粒子群算法在最優(yōu)化問(wèn)題中的研究.pdf
- 粒子群算法在多維優(yōu)化問(wèn)題中的改進(jìn)研究.pdf
- 粒子群優(yōu)化算法在玻璃排版問(wèn)題中的應(yīng)用.pdf
- 改進(jìn)粒子群優(yōu)化算法及其在水庫(kù)優(yōu)化調(diào)度問(wèn)題中的應(yīng)用.pdf
- 粒子群算法研究及在化工動(dòng)態(tài)優(yōu)化問(wèn)題中的應(yīng)用.pdf
- 協(xié)同粒子群算法及其在多車場(chǎng)路徑優(yōu)化問(wèn)題中的應(yīng)用.pdf
- 差異工件單機(jī)批調(diào)度問(wèn)題的離散粒子群優(yōu)化算法研究.pdf
- 43532.粒子群優(yōu)化算法在模糊時(shí)間序列預(yù)測(cè)問(wèn)題中的應(yīng)用
- 粒子群優(yōu)化算法粒子群優(yōu)化算法簡(jiǎn)介
- 基于粒子群優(yōu)化的離散多目標(biāo)優(yōu)化算法.pdf
- 粒子群算法在旅行商問(wèn)題中的應(yīng)用研究.pdf
- 基于P系統(tǒng)的改進(jìn)粒子群優(yōu)化算法研究及其在聚類問(wèn)題中的應(yīng)用.pdf
- 粒子群優(yōu)化算法粒子群優(yōu)化算法簡(jiǎn)介
- 改進(jìn)的粒子群優(yōu)化算法在整數(shù)規(guī)劃和可靠性問(wèn)題中的應(yīng)用.pdf
- 改進(jìn)粒子群算法及在油品調(diào)合問(wèn)題中的應(yīng)用.pdf
- 復(fù)雜優(yōu)化問(wèn)題中小生境粒子群優(yōu)化算法的改進(jìn)及研究.pdf
- 粒子群算法在車輛路徑問(wèn)題中的應(yīng)用.pdf
- 基于離散粒子群優(yōu)化算法的網(wǎng)格任務(wù)調(diào)度方法.pdf
- 基于粒子群算法的組網(wǎng)優(yōu)化問(wèn)題研究.pdf
- 多角度改進(jìn)粒子群算法及在NP問(wèn)題中的應(yīng)用.pdf
評(píng)論
0/150
提交評(píng)論