水平軸風力發(fā)電機性能過渡,湍流和偏航的影響外文翻譯_第1頁
已閱讀1頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p><b>  理工學院</b></p><p>  畢業(yè)設(shè)計(論文)外文資料翻譯</p><p>  專 業(yè): 電氣工程及其自動化 </p><p>  姓 名: </p><p&g

2、t;  學 號: </p><p>  外文出處: Xu, G., Sankar, L. N., “Effects of Transition, Turbulence, and Yaw on the Performance of Horizontal Axis Wind Turbines”, AIAA-2000-0048, Prepared

3、for the 38th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 10-13, 2000, p. 259-265.</p><p>  附 件: 1.外文資料翻譯譯文;2.外文原文。 </p><p><b>  附件1</b></p><p>  水平

4、軸風力發(fā)電機性能過渡,湍流和偏航的影響</p><p>  Guanpeng徐和Lakshmi N.???lt;/p><p><b>  航空航天工程學院</b></p><p><b>  摘要</b></p><p>  最近出示的是改善的功能改善的混合動力車的的水平軸風力渦輪機(HAWT)配置N

5、avier-Stokes勢流建模方法。研究的重點在三個問題上:湍流模型和轉(zhuǎn)換模型,預測轉(zhuǎn)子規(guī)定性能喚醒狀態(tài)以及非軸向流(偏航)發(fā)電的影響,比較轉(zhuǎn)子在國家可再生能源實驗室(NREL)的測試與測量數(shù)據(jù).</p><p><b>  簡介</b></p><p>  水平軸風力渦輪機空氣動力學的計算研究工作是在佐治亞理工學院進行。本研究著重于了解影響風力渦輪機在非軸向和非均

6、勻流入的流動機制的性能,也解決了高效的計算技術(shù)的發(fā)展,以補充現(xiàn)有的聯(lián)合葉片元素動量理論方法。</p><p>  這項工作是一個擴展的3-D的混合Navier-Stokes/potential流動求解,并已在佐治亞理工學院的水平軸風力發(fā)電機(HAWT)進行改善。在這種方法中的三維非定??蓧嚎sNavier-Stokes方程的解決只能在周圍的轉(zhuǎn)子葉片上的貼體網(wǎng)格這片一個很小的區(qū)域,。遠離葉片的和潛在的流動方程需要從葉

7、片脫落的渦模擬渦細絲渦留下的Navier-Stokes地區(qū)的求解。 這些細絲自由對流的地方流動。由于復雜的Navier-Stokes方程的計算只在附近的風力渦輪機葉片的地區(qū),因此跟蹤的渦利用拉格朗日方法,這是更有效的Navier-Stokes方程的方法級。</p><p>  基本的Navier-Stokes方程混合勢流的方法和其應用程序HAWT下軸流條件的記錄在AIAA-99-0042(徐和Sankar,199

8、9年)</p><p><b>  .</b></p><p><b>  本研究范圍</b></p><p>  本文介紹了近期的流動求解的增強功能和應用程序配置的興趣。增強集中在以下三個方面:過渡和湍流模型,物理一致喚醒建模,建模的偏航效果。下文簡要討論這三個領(lǐng)域。</p><p>  過渡和湍

9、流的建模問題:</p><p>  研究兩種湍流模型和兩個過渡模型的預測性能影響的進行評估。一個顯示Spalart-Allmaras湍流方程湍流模型(書珥等,1998),另一個對基線鮑德溫 - 洛馬克斯零方程湍流模型進行了研究。</p><p>  HAWT系統(tǒng)中遇到低的相對速度和小和弦的長度的后果會使一個顯著的部分可以在葉片的邊界層產(chǎn)生層流。過渡線的位置會影響檔案中由轉(zhuǎn)子消耗的功率,并且

10、會影響發(fā)電?,F(xiàn)有兩個過渡模型預測的過渡位置,一個是Eppler,一個基于Michel的判據(jù)。Eppler模型是許多國家再生能源實驗室贊助的設(shè)計規(guī)范,是一個明顯的第一個候選過渡預測。 而Michel的準則(米歇爾1984)開發(fā)基于二維的不可壓縮的流中的測量。這些模型使用了許多飛機產(chǎn)業(yè)邊界層代碼,如開發(fā)Tuncer杰貝吉(1989)。</p><p><b>  喚醒幾何建模:</b></

11、p><p>  規(guī)定尾流模型在混合動力Navier-Stokes/Potential的流動分析已被修改,以適當反映轉(zhuǎn)子的狀態(tài),可以認為是風速的變化。它是由Glauert(1937)并延長了威爾遜和Lissaman的(1972年)基于理論和現(xiàn)象提出的風轉(zhuǎn)子的轉(zhuǎn)子狀態(tài)。</p><p><b>  偏航的影響:</b></p><p>  最后數(shù)值計算

12、方法建模在傾斜的風(偏航)的條件下得到了發(fā)展。至于在軸流模擬計算偏航只需要一個單一葉片的空氣動力學模型。其他的葉片將經(jīng)歷相同的負載和流動模式的1 / N轉(zhuǎn)(其中N是葉片的數(shù)量)。三葉片轉(zhuǎn)子的轉(zhuǎn)子盤計算領(lǐng)域涵蓋了120度。在目前程序在偏航條件下保留了混合方法的效率。一個完整的Navier-Stokes方程的混合方法,需要所有刀片的造型,將大大增加計算。</p><p><b>  數(shù)學和數(shù)值配方</

13、b></p><p>  AIAA-99-0042(許和Sankar,1999)中給出的混合動力車背后的理論在本混合方法的完整描述。 ,??柡退耐聜冞€使用了混合過程中的幾個固定翼和旋轉(zhuǎn)翼解算器。出于這個原因需要列出湍流過渡模型增強功能和擴展流求解器偏航條件。</p><p>  選用Spalart-Allmaras湍流模型:</p><p>  第一個增

14、強的混合分析是一個簡單的代數(shù)渦粘度模型與現(xiàn)象學的一個方程渦粘性模型Spalart-Allmaras模型的代換。</p><p>  在這個模型中,雷諾壓力由下式給出</p><p><b> ?。?)</b></p><p><b>  且</b></p><p><b> ?。?)&l

15、t;/b></p><p><b>  渦粘度</b></p><p><b>  (3)</b></p><p>  其中, </p><p><b>  And, </b></p><p><b>

16、;  這里是分子粘度。</b></p><p>  數(shù)量是工作的變量和服從的輸運方程。</p><p><b>  (4)</b></p><p>  在這里,S是的渦量的大小,</p><p><b>  (5)</b></p><p>  另外,d是為最接近的

17、壁的距離,并</p><p><b>  (6)</b></p><p>  該函數(shù)由下面的表達式給出:</p><p><b>  (7)</b></p><p><b>  而且</b></p><p><b>  (8)</b>

18、;</p><p><b>  并且</b></p><p><b>  (9)</b></p><p>  對于大型的r值,F(xiàn)W漸近達到一個恒定值,r的值可以被截斷在10左右。</p><p>  壁面邊界條件是V= 0。在來流V= 0時是最好的工作條件,提供的數(shù)值誤差不超過負值的邊緣附近的邊界層

19、。以下的值是可以接受的。</p><p>  Spalart-Allmaras模型具有一個內(nèi)置的提供用于驅(qū)動渦粘度為零的過渡點的上游。這是通過平方英尺的函數(shù)使它前進到統(tǒng)一的過渡點的上游。</p><p><b>  (10)</b></p><p>  跳閘功能的計算方法如下。讓dt為從場點的距離到跳閘位置,這是在墻上。讓的數(shù)量的壁渦度在跳閘位

20、置,其差為場點之間的速度和在行程。然后,我們可以計算一個中間值是網(wǎng)格間距沿著墻壁的行程位置。最后,</p><p><b>  (11)</b></p><p><b>  常數(shù)是:</b></p><p>  cb1=0.1355, =2/3, cb2= 0.622, =0.41,,=0.3, =2, =7.1, , ,

21、.</p><p>  選用Spalart-Allmaras模型的進一步詳細信息,的書珥等。 (1998年)。</p><p>  Eppler過渡預測模型</p><p>  第二個增強的混合方法是把的過渡線預測模型。兩種模式,一種由Eppler和第二由Michel已調(diào)查。</p><p>  Eppler的過渡模式,混合動力車Navier

22、-Stokes/Potential流的分析,以下列方式實施。每10個時間步長左右,在一個時間的一個徑向位置渦輪葉片上的表面壓力分布傳遞給一個不可分割的邊界層分析。在邊界層內(nèi)分析時,流向如動量厚度的層流邊界層的數(shù)量增長?,形狀因子H,能源厚度?3,和因子H32=??3/?使用特威士'方法(特威士,1949計算)。過渡預測發(fā)生動量厚度的基礎(chǔ)上,如果雷諾數(shù)變大,使得:</p><p><b> ?。?

23、2)</b></p><p>  這里是在邊緣的速度邊界層,'r'是粗糙度因子。對于高度拋光的表面,r可以視為零。</p><p>  該模型還預測,如果層流邊界層的分離,過渡發(fā)生,并且所述轉(zhuǎn)子的前緣附近形成一個分離泡。</p><p>  陳Thyson轉(zhuǎn)移模型和米歇爾的標準:</p><p>  在這個模型中,

24、過渡是說發(fā)生在本地雷諾數(shù)動量厚度的基礎(chǔ)上基于長度的雷諾數(shù)有關(guān)的弦向位置,</p><p><b> ?。?3)</b></p><p>  為了避免突然的轉(zhuǎn)變,,陳和Thyson推薦的渦流粘度乘以系數(shù):</p><p><b> ?。?4)</b></p><p>  過渡區(qū)域的開始點的上游,被設(shè)置

25、為零。量G計算:</p><p><b> ?。?5)</b></p><p>  過渡雷諾數(shù)的定義為:</p><p><b> ?。?6)</b></p><p><b>  而且,</b></p><p><b> ?。?7)</b

26、></p><p>  應當指出,是根據(jù)本地流速度(風速,誘導速度,由于旋轉(zhuǎn)的葉片速度的矢量和的大?。┑臄?shù)量的Rx。因此,用于風力渦輪機中,</p><p><b>  (18)</b></p><p>  的無量綱的速度被計算為,</p><p><b>  (19)</b></p&g

27、t;<p>  其中,r是從輪轂的局部徑向距離,R是尖端半徑,是無量綱的x坐標。誘導速度Vi是估計一階的動量理論。雷諾數(shù)動量厚度的基礎(chǔ)上還使用自由流速度,而不是邊界層邊緣速度計算。</p><p><b>  偏航模擬方法:</b></p><p>  造型軸風力條件下(偏航)的數(shù)值程序已經(jīng)研制成功。在軸流計算,偏航計算只需要一個單一的葉片的空氣動力學模

28、型。其他的葉片將經(jīng)歷相同的負載和流動模式的1 / N轉(zhuǎn)后(其中N是葉片的數(shù)量)。對于一個三葉片轉(zhuǎn)子的計算域覆蓋120°部的轉(zhuǎn)子盤在一個特定的運行時間。因此,本程序保留即使對于偏航條件下的混合方法的效率。相反的混合方法,將需要一個完整的Navier-Stokes方程建模的所有刀片服務器,大大增加了計算。</p><p>  當開發(fā)基于分析建模在橫流的轉(zhuǎn)子的第一原理,有三種類型的非軸向流(偏航)的影響處理。

29、首先是在流之間的前進和后退的雙方,由于“邊緣明智”轉(zhuǎn)子盤的平面中的速度分量的差。正如圖1中所示,渦輪機葉片經(jīng)歷了較高的前進側(cè)和后退側(cè)的相對速度比對。這種速度波動產(chǎn)生的葉片負載的波動和產(chǎn)生的功率。</p><p>  必須進行建模的第二個效果是如在圖2中所示的偏度端渦流喚醒。這導致在一個方位非均勻引起的流場在轉(zhuǎn)子平面。此外,喚醒渦度強度和葉片上的載荷將隨時間而改變。相反,這是一個在軸向流動,其中葉片載荷是獨立的葉片

30、的方位角位置。</p><p>  最后,盡可能分析必須包括轉(zhuǎn)子葉片的氣動彈性變形和刀片teetoring和拍打運動。由于轉(zhuǎn)子測試NREL使用僵硬的葉片時,葉片被假定是剛性的,沒有任何循環(huán)俯仰或撲的葉片。</p><p>  本雜交的方法一直延續(xù)到模擬偏航條件。此方法使用一個扭曲的喚醒的幾何建模偏航流動條件。歪斜角度流入速度(這是一個組合的誘導速度從動量理論和風速的正常的組成部分)和扁繞風

31、速分量之間的比率確定。</p><p>  兩步precedure已被用于建模偏航效果。第一步在給定風速模擬軸流條件,當混合動力碼已經(jīng)收斂,保存梢渦的強度和喚醒的幾何形狀設(shè)計的軸向流條件。這些數(shù)量作為第二步驟,如上面所討論,喚醒幾何形狀歪斜的initioal條件和扁繞速度分量被施加到“自由流”速度。</p><p>  峰值綁定循環(huán)強度在方位在每10°的增量被設(shè)定為強度可用于所有

32、的梢渦段棚從所有的葉片,經(jīng)過兩轉(zhuǎn)的做參考葉片的流場可以考慮是發(fā)達的和周期性的。</p><p>  與軸向流條件不同的基準葉片部的流動性能在偏航將不收斂到穩(wěn)定狀態(tài)的解決方案。重復性的葉片負荷從一個革命的下一個被用作收斂標準。</p><p><b>  結(jié)果與討論</b></p><p>  轉(zhuǎn)換模型和湍流模型的研究</p>&l

33、t;p>  Baldwin-Lomax和選用Spalart-Allmaras湍流模型Eppler和米歇爾的過渡機型已完全集成到佐治亞理工學院的混合代碼。圖3和圖4示出的預測NREL三期轉(zhuǎn)子(Schepers 1997),工作在6米/秒的風速被稱為用于風力渦輪機的上表面和下表面的過渡線。轉(zhuǎn)子72轉(zhuǎn)。在這樣低的風速度條件下,流場的表現(xiàn)很好,在大部分的轉(zhuǎn)子附著流。在這些數(shù)字中,0 EQN的傳說'和'1 EQN“,分別代表

34、了Baldwin-Lomax和顯示Spalart應用SA模型。</p><p>  同時在上和下表面,Eppler的模型預測Michel的預測是上游的過渡位置。 Eppler的模式,在目前的代碼實現(xiàn),首先檢查,看看層流邊界層分離。如果是這樣,Eppler的模型假設(shè),這種轉(zhuǎn)變已經(jīng)發(fā)生。請注意,拐點的分離流邊界層引起Tollmien Schlichting不穩(wěn)定的發(fā)展,而轉(zhuǎn)換。米歇爾準則,在另一方面,根據(jù)其過渡標準主

35、要的邊界層厚度。在這個風速,邊界層增長高達55%弦或之前,米歇爾的標準檢測過渡。</p><p>  下表面上的壓力梯度往往比的上側(cè)是更有利。這導致了一個較薄的邊界層和分離后面的40%弦。其結(jié)果是,這兩個標準預測過渡將發(fā)生后面的相應的上表面位置。</p><p>  根附近的雷諾數(shù)是小于105。這兩個模型預測,該流程將保持層流至后緣附近的根部區(qū)域的方式。還觀察到過渡線的位置是相對不敏感,以

36、所使用的湍流模型。</p><p>  圖5示出的CER在8m / s的第三階段的轉(zhuǎn)子的下表面上的過渡線。過渡線,即使整體的圖案類似的6米/秒的情況下,以下的差異可能會觀察到:</p><p>  一)Michel的模型預測,被延遲了多少的下表面的過渡現(xiàn)象相比,以6米/秒的情況下。這是由于較高的局部攻角的葉片部分的運作中,在轉(zhuǎn)子迎風側(cè)上存在的和有利的壓力梯度。</p><

37、;p>  b)本Eppler轉(zhuǎn)換模型,另一方面,預測在8m / s的和6米/ s的條件類似的過渡線,大概是因為層狀分離檢測到在40%附近的弦在這兩個風力條件。請注意,在S-809翼型件的最大厚度的位置附近,40%弦的壓力梯度是有利的從前緣到40%弦長,在這之后在這些風力條件帶來不利的影響。</p><p>  C)在較高的風速,一個更大的區(qū)域根附近的迎風面層。</p><p>  d

38、)在過渡線顯示Spalart-Allmaras湍流模型預測米歇爾的過渡模式,結(jié)合附33%的半徑。這種現(xiàn)象的原因是不知道在寫這篇文章。</p><p>  圖6示出的上表面上在8m / s的過渡線。 eppler的模型預測會發(fā)生這種過渡前沿附近的,作為一個結(jié)果,前緣分離。 Michel的模型,另一方面,預測大約50%弦過渡,在過渡位置??有相當大的徑向變化,尤其是在靠近根。</p><p>

39、  8 m / s和6米/秒的轉(zhuǎn)子之間的上表面過渡模式中觀察到的大差異是歸屬于在渦輪機的運行狀態(tài)的變化。第三階段的轉(zhuǎn)子,72轉(zhuǎn),周圍的風速提高到8米/秒,風力渦輪機狀態(tài)下交換機的運行狀態(tài)湍流尾流狀態(tài)(威爾遜,可再生能源等,1974)。</p><p><b>  偏航結(jié)果</b></p><p>  代碼已被修改的混合動力車考慮到三個偏航效果如前所述。第三階段為10

40、m / s風速轉(zhuǎn)子進行了研究和20°的固定偏航狀態(tài)。圖7示出了所產(chǎn)生的所有的三個葉片的總功率,并考慮到在葉片之間的相位差。瞬時功率曲線顯示上重疊的高頻分量的平均值。約4%的功率波動的時間平均功率。時間平均值是很好的一致性與可再生能源實驗室的數(shù)據(jù)。</p><p>  圖7是從模擬的數(shù)據(jù),因為傅立葉過濾本結(jié)果后的結(jié)果包含數(shù)值的噪聲。例如,在本模擬中,每隔10°的方位角更新喚醒誘導速度。這將產(chǎn)生數(shù)

41、字噪聲在波數(shù)為36,即必須過濾掉。</p><p>  第四期轉(zhuǎn)子NREL測量左右,混合求解的結(jié)果。第四階段轉(zhuǎn)子NREL第三階段的轉(zhuǎn)子相同的幾何形狀,但已經(jīng)提高了測量設(shè)備。一系列的非穩(wěn)定的測量的時間持續(xù)16秒或18秒的轉(zhuǎn)子的轉(zhuǎn)。測得的數(shù)據(jù)不僅包括影響的偏航和非定常風流入,但也有其他如塔影,風切變的影響。圖8示出了測量的風的晃動。</p><p>  圖9比較了本混合方法的結(jié)果,在五種典型的

42、時間間隔,每個間隔correspionding一個葉片革命與實測數(shù)據(jù)。這兩種計算的數(shù)據(jù)和測量表明可比電源波動,約可比平均值。</p><p><b>  結(jié)束語</b></p><p>  喬治亞理工大學的風力渦輪機代碼已被廣泛的改善?,F(xiàn)在使用經(jīng)驗轉(zhuǎn)移模型來模擬從層流到湍流的過渡?,F(xiàn)象學一方程湍流模型已經(jīng)取代了代數(shù)湍流模型。該代碼已修改為模型偏航的影響。初步計算驗證這

43、些增強功能的預測是一致的測量。</p><p><b>  致謝</b></p><p>  國家可再生能源實驗室(NREL)支持這項工作。艾倫Laxson和斯科特·施羅克國家再生能源實驗室,桑迪亞國家實驗室和沃爾特·沃爾夫是技術(shù)的顯示器。</p><p><b>  參考文獻:</b></p&g

44、t;<p>  1 的Tuncer杰貝吉,“低雷諾數(shù)號碼翼型基本要素的方法,”AIAA期刊,。 1989年12月27日,第12號,第1680至1685年。</p><p>  2 陳,KK,和Thyson的,不適用,“埃蒙斯”現(xiàn)貨理論擴展到流鈍體,“AIAA雜志,。 9,1971年,第821-825</p><p>  3 Eggleston和干洗,風力發(fā)電工程的設(shè)計,ISB

45、N0-442-22195-9</p><p>  4 Eppler,R.,翼型設(shè)計和數(shù)據(jù),紐約,NY,施普林格出版社,1990年,562頁。</p><p>  5 Glauert,H.“飛機螺旋槳,”從息。 L,空氣動力學原理,編輯。 W. F.杜蘭德,柏林:施普林格出版社,1935年。</p><p>  6 米歇爾等人,“穩(wěn)定計算和轉(zhuǎn)換標準或三維流”層流湍流過

46、渡,新西伯利亞,蘇聯(lián),7月9-13日,1984年,第455-461。</p><p>  7 特威士,B.,“近似計算的層流邊界層,”航空季刊,卷。 1,1949,pp.245-280。</p><p>  8 Schepers,等“最終IEA報告的附件XIV場轉(zhuǎn)子空氣動力學”。荷蘭能源研究基金會,ECN-C-97-027</p><p>  9 M.書珥,等,“湍

47、流模型在旋轉(zhuǎn)和彎曲通道:評估的顯示Spalart書珥校正,”AIAA98-0325。</p><p>  10 選用Spalart,PR,應用SA,SR,“空氣動力流的一方程湍流模型,”AIAA-92-0439。</p><p>  11 威爾遜,RE和Lissaman的,PBS,“風力機空氣動力學的應用,”俄勒岡州立大學,1974。</p><p>  圖1:Re

48、altive的流速在磁盤平面 圖2。歪斜喚醒的原理圖</p><p>  圖。3的上表面上的過渡線 圖。4過渡三期轉(zhuǎn)子的下表面上在6米/秒的線</p><p>  圖。5轉(zhuǎn)換三期轉(zhuǎn)子的下表面8 m / s的線 圖。6過渡三期轉(zhuǎn)子的上表面8 m / s的線</p><p>  圖。7混合碼預

49、測的瞬時發(fā)電 圖8。在實驗時間18系列的天然來水量風</p><p><b>  附件2</b></p><p>  Effects of Transition, Turbulence and Yaw on the Performance of Horizontal Axis Wind Turbines</p><p&

50、gt;  Guanpeng Xu and Lakshmi N. Sankar</p><p>  School of Aerospace Engineering</p><p>  Georgia Institute of Technology, Atlanta, GA 30332-0150</p><p><b>  ABSTRACT</b>

51、</p><p>  Recent improvements to the capabilities of a hybrid Navier-Stokes potential flow methodology for modeling horizontal axis wind turbine (HAWT) configurations are presented. The study focuses on thre

52、e issues: the effects of turbulence models and transition models, the effects of prescribed wake states on predicted rotor performance, and the effects of non-axial flow (yaw) on power generation. Comparisons with measur

53、ed data for a rotor tested at the National Renewable Energy Laboratory (NREL) is pr</p><p>  INTRODUCTION</p><p>  A computational research effort is underway at Georgia Tech in the area of hori

54、zontal-axis wind-turbine aerodynamics. The research focuses on understanding the flow mechanisms that affect the performance of wind turbines in non-axial and non-uniform inflow. The effort also addresses the development

55、 of efficient computational techniques that complement existing combined blade element-momentum theory methods.</p><p>  This work is an extension of a 3-D hybrid Navier-Stokes/potential flow solver that has

56、 been developed at Georgia Tech for horizontal axis wind turbines (HAWT). In this approach the three-dimensional unsteady compressible Navier-Stokes equations are solved only in a small region, on a body-fitted grid surr

57、ounding the rotor blade. Away from the blades, the potential flow equation is solved. The vorticity shed from the blades is modeled as vortex filaments once the vorticity leaves the Navier-Stoke</p><p>  The

58、 basic hybrid Navier-Stokes potential flow methodology and its application to HAWT under axial-flow conditions are documented in AIAA-99-0042 (Xu and Sankar, 1999). </p><p>  SCOPE OF THE PRESENT STUDY</

59、p><p>  This paper describes recent enhancements to the flow solver, and applications to configurations of interest. The enhancements focused on the following three areas: transition and turbulence modeling, ph

60、ysically consistent wake modeling, and modeling of yaw effects. These three areas are briefly discussed below.</p><p>  Transition and Turbulence Modeling Issues:</p><p>  Studies were done to a

61、ssess the effects of two turbulence models and two transition models on the predicted performance. A one-equation Spalart-Allmaras turbulence model (Shur et al. 1998) and the baseline zero-equation Baldwin-Lomax turbulen

62、ce model were studied. </p><p>  As a consequence of the low relative velocities and small chord lengths encountered in HAWT systems, a significant portion of the boundary layer over the blade can be laminar

63、. The location of the transition line affects the profile power consumed by the rotor, and can impact the power generation. To predict the transition position, two existing transition models, one by Eppler, and a second

64、based on Michel's criterion, were used. The Eppler model is used in many NREL sponsored design codes, and </p><p>  Wake Geometry Modeling:</p><p>  The prescribed wake model in the hybrid N

65、avier-Stokes/Potential flow analysis has been modified to properly reflect the states that a rotor can assume, as the wind speed changes. It is based on the theory and phenomenology of rotor states, which was presented b

66、y Glauert (1937) and was extended by Wilson and Lissaman (1972) to wind rotors.</p><p>  Yaw Effects:</p><p>  Finally, a numerical procedure for modeling skewed wind (yaw) conditions has been d

67、eveloped. As in axial flow simulations, the yaw calculations only need to model the aerodynamics of a single blade. Other blades will experience the same load and flow pattern 1/N revolutions later, where N is the number

68、 of blades. For a three-bladed rotor the computational domain covers a 120 portion of the rotor disk. The present procedure thus retains the efficiency of hybrid method even for yaw conditions. In </p><p>  

69、MATHEMATICAL AND NUMERICAL FORMULATION</p><p>  A complete description of the hybrid theory behind the present hybrid approach is given in AIAA-99-0042 (Xu and Sankar, 1999). Sankar and his coworkers have al

70、so used the hybrid procedure in several fixed and rotary wing solvers. For this reason, only the turbulence and transition model enhancements, and the extension of the flow solver to yaw conditions are presented here. &

71、lt;/p><p>  Spalart-Allmaras Turbulence Model: </p><p>  The first enhancement to the hybrid analysis was the replacement of a simple algebraic eddy viscosity model with a phenomenological one-equa

72、tion eddy viscosity model called the Spalart-Allmaras model.</p><p>  In this model, the Reynolds stresses are given by </p><p><b>  (1)</b></p><p><b>  Where <

73、/b></p><p><b>  (2)</b></p><p>  The eddy viscosity is given by</p><p><b>  (3)</b></p><p><b>  Where,</b></p><p>

74、<b>  And, </b></p><p>  Here is the molecular viscosity. The quantity is the working variable and obeys the transport equation.</p><p><b>  (4)</b></p><p>

75、  Here S is the magnitude of the vorticity, and</p><p><b>  (5)</b></p><p>  Also, d is the distance to the closest wall, and,</p><p><b>  (6)</b></p>

76、<p>  The function is given by the following expression:</p><p><b>  (7)</b></p><p><b>  Where</b></p><p><b>  (8)</b></p><p&g

77、t;<b>  And</b></p><p><b>  (9)</b></p><p>  For large values of r, fw asymptotically reaches a constant value; therefore, large values of r can be truncated to 10 or so.&

78、lt;/p><p>  The Wall boundary condition is = 0. In the freestream = 0 is found to work best, provided numerical errors do not push to negative values near the edge of the boundary layer. Values below are acc

79、eptable. </p><p>  The Spalart-Allmaras model has a built-in provision for driving the eddy viscosity to zero upstream of the transition point. This is done by the ft2 function, which goes to unity upstream

80、of the transition point. </p><p><b>  (10)</b></p><p>  The trip function is computed as follows. Let dt be the distance from the field point to the trip location, which is on a wall

81、. Let the quantity be the wall vorticity at the trip location, and the difference between the velocity at the field point and that at the trip. Then one can compute an intermediate quantity where is the grid spacing al

82、ong the wall at the trip location. Finally,</p><p><b>  (11)</b></p><p>  The constants are:</p><p>  cb1=0.1355, =2/3, cb2= 0.622, =0.41,</p><p>  ,=0.3, =

83、2, =7.1, , ,.</p><p>  Further details on the Spalart-Allmaras model are given by Shur et al. (1998).</p><p>  Eppler Transition Prediction Model </p><p>  The second enhancement to

84、 the hybrid method was the incorporation of transition line prediction models. Two models, one by Eppler, and the second by Michel have been investigated.</p><p>  The Eppler’s transition model was implement

85、ed in the hybrid Navier-Stokes/Potential flow analysis, in the following manner. Every 10 time steps or so, the surface pressure distribution on the turbine blade is passed to an integral boundary layer analysis, one rad

86、ial location at a time. Inside the boundary layer analysis, the streamwise growth of laminar boundary layer quantities such as the momentum thickness , shape factor H, energy thickness ?3, and the factor H32=??3/? are c

87、omputed using Thw</p><p><b>  (12)</b></p><p>  Here is the velocity at the edge of boundary layer, and ‘r’ is a roughness factor. For highly polished surfaces, r may be taken to be

88、 zero.</p><p>  This model also predicts that transition has occurred if the laminar boundary layer separates, and forms a separation bubble near the leading edge of the rotor. </p><p>  Chen-Th

89、yson Transition Model and Michel’s Criterion:</p><p>  In this model, transition is said to occur at the chordwise location where the local Reynolds number based on the momentum thickness is related to the

90、Reynolds number based on length by,</p><p><b>  (13)</b></p><p>  In order to avoid an abrupt transition, Chen and Thyson recommend that the eddy viscosity be multiplied by the facto

91、r:</p><p><b>  (14)</b></p><p>  Upstream of onset point of transition region, is set to zero. The quantity G is computed from:</p><p><b>  (15)</b></p&g

92、t;<p>  The transition Reynolds number is defined as:</p><p><b>  (16)</b></p><p><b>  And,</b></p><p><b>  (17)</b></p><p> 

93、 It should be noted that the quantity Rx is based on the local freestream velocity (the magnitude of the vector sum of wind speed, induced velocity, and the blade velocity due to rotation ). Thus, for wind turbines,</

94、p><p><b>  (18)</b></p><p>  The non-dimensional velocity is computed as,</p><p><b>  (19)</b></p><p>  Where r is the local radial distance from

95、the hub, R is the tip radius, and is non-dimensional x coordinate. Induced velocity vi is estimated to a first order from the momentum theory. The Reynolds number based on the momentum thickness is also computed using t

96、he free-stream velocity, not the boundary layer edge velocity.</p><p>  Methodology for Yaw Simulation</p><p>  A numerical procedure for modeling off axis wind (yaw) conditions has been develop

97、ed. As in axial flow calculations, the yaw calculations only need to model the aerodynamics of a single blade. Other blades will experience the same load and flow pattern 1/N revolutions later, where N is the number of b

98、lades. For a three-bladed rotor the computational domain covers a 120 portion of the rotor disk at a specific running time. The present procedure thus retains the efficiency of the hybrid method eve</p><p> 

99、 When developing the first-principles based analysis for modeling rotors in cross flow, there are three kinds of non-axial flow (yaw) effects that should be addressed. First is the difference in the flow between the adva

100、ncing and retreating sides due to the “edge-wise” velocity component in the plane of rotor disk. As shown in figure 1, the turbine blade experiences a higher relative velocity on the advancing side than on the retreating

101、 side. This fluctuation in velocity produces fluctuations in </p><p>  The second effect that must be modeled is the skewness of tip vortex wake as shown in figure 2. This results in an azimuthally non-unifo

102、rm induced flow field at the rotor plane. Furthermore, the vorticity strength in the wake will vary with time, as the loads on the blade vary with time. This is in contrast to axial flow, where the blade loading is indep

103、endent of the azimuthal location of the blade.</p><p>  Finally, the analysis must include aeroelastic deformation of the rotor blades, and blade teetoring and flapping motion, if any. Since the rotor tested

104、 by NREL uses stiff blades, the blade was assumed to be rigid without any cyclic pitching or flapping of the blades. </p><p>  The present Hybrid methodology has been extended to simulation of yaw conditions

105、. This method uses a skewed wake geometry to model yawed flow conditions. The skew angle is determined by the ratio between the inflow velocity (which is a combination of the induced velocity from momentum theory and th

106、e normal component of wind velocity), and the edgewise component of wind velocity. </p><p>  A two step precedure has been used for modeling yaw effects. The first step simulates axial flow conditions at a g

107、iven wind speed. When the hybrid code has converged, the tip vortex strength, and the wake geometry for the axial flow condition are saved. These quantities serve as the initioal condition for the second step, where th

108、e wake geometry is skewed as discussed above, and the edgewise velocity component is applied to the “freestream” velocity. </p><p>  At every 10 degree increments in azimuth, the peak bound circulation stren

109、gth at that azimuthal angle is set to be the strength for all the tip vortex segments that were shed from all the blades when they were at that azimuthal angle. After two revolutions of the refrence blade, the flow fiel

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論