通信工程專業(yè)英文翻譯--蜂窩無線通信系統(tǒng)的仿真_第1頁
已閱讀1頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p>  畢 業(yè) 設(shè) 計(jì)(論 文)外 文 參 考 資 料 及 譯 文</p><p>  譯文題目:SIMULATION OF A CELLULAR RADIO SYSTEM</p><p>  ——蜂窩窩無線通信系統(tǒng)的仿真</p><p><b>  說明:</b></p><p>  要求學(xué)生結(jié)合畢業(yè)設(shè)計(jì)

2、(論文)課題參閱一篇以上的外文資料,并翻譯至少一萬印刷符(或譯出3千漢字)以上的譯文。譯文原則上要求打印(如手寫,一律用400字方格稿紙書寫),連同學(xué)校提供的統(tǒng)一封面及英文原文裝訂,于畢業(yè)設(shè)計(jì)(論文)工作開始后2周內(nèi)完成,作為成績考核的一部分。</p><p>  SIMULATION OF A CELLULAR RADIO SYSTEM</p><p>  ———taken from《P

3、rentice Hall - Principles Of Communication Systems Simulation With Wireless Aplications》page672-676</p><p>  1 . Introduction</p><p>  A wide variety of wireless communication systems have been

4、developed to provide access to the communications infrastructure for mobile or fixed users in a myriad of operating environments. Most of today’s wireless systems are based on the cellular radio concept. Cellular communi

5、cation systems allow a large number of mobile users to seamlessly and simultaneously communicate to wireless modems at fixed base stations using a limited amount of radio frequency (RF) spectrum. The RF transmissions rec

6、e</p><p>  Wireless communication links experience hostile physical channel characteristics, such as time-varying multipath and shadowing due to large objects in the propagation path. In addition, the perfor

7、mance of wireless cellular systems tends to be limited by interference from other users, and for that reason, it is important to have accurate techniques for modeling interference. These complex channel conditions are di

8、fficult to describe with a simple analytical model, although several models do provi</p><p>  Like wireless links, the system performance of a cellular radio system is most effectively modeled using simulati

9、on, due to the difficulty in modeling a large number of random events over time and space. These random events, such as the location of users, the number of simultaneous users in the system, the propagation conditions, i

10、nterference and power level settings of each user, and the traffic demands of each user,combine together to impact the overall performance seen by a typical user in th</p><p>  The link performance is a smal

11、l-scale phenomenon, which deals with the instantaneous changes in the channel over a small local area, or small time duration, over which the average received power is assumed constant . Such assumptions are sensible in

12、the design of error control codes, equalizers, and other components that serve to mitigate the transient effects created by the channel. However, in order to determine the overall system performance of a large number of

13、users spread over a wide geogr</p><p>  Cellular systems achieve high capacity (e.g., serve a large number of users) by allowing the mobile stations to share, or reuse a communication channel in different re

14、gions of the geographic service area. Channel reuse leads to co-channel interference among users sharing the same channel, which is recognized as one of the major limiting factors of performance and capacity of a cellula

15、r system. An appropriate understanding of the effects of co-channel interference on the capacity and performance </p><p>  2 Cellular Radio System</p><p>  System-Level Description:</p>&

16、lt;p>  Cellular systems provide wireless coverage over a geographic service area by dividing the geographic area into segments called cells as shown in Figure 17.1. The available frequency spectrum is also divided int

17、o a number of channels with a group of channels assigned to each cell. Base stations located in each cell are equipped with wireless modems that can communicate with mobile users. Radio frequency channels used in the tra

18、nsmission direction from the base station to the mobile are referred t</p><p>  High-capacity cellular systems employ frequency reuse among cells. This requires that co-channel cells (cells sharing the same

19、frequency) are sufficiently far apart from each other to mitigate co-channel interference. Channel reuse is implemented by covering the geographic service area with clusters of N cells, as shown in Figure 17.2, where N i

20、s known as the cluster size.</p><p>  The RF spectrum available for the geographic service area is assigned to each cluster, such that cells within a cluster do not share any channel . If M channels make up

21、the entire spectrum available for the service area, and if the distribution of users is uniform over the service area, then each cell is assigned M/N channels. As the clusters are replicated over the service area, the re

22、use of channels leads to tiers of co-channel cells, and co-channel interference will result from the propagatio</p><p><b>  (17.1)</b></p><p>  where R is the maximum radius of the c

23、ell (the hexagon is inscribed within the radius). Therefore, we can immediately see from Figure 17.2 that a small cluster size (small reuse distance ), leads to high interference among co-channel cells.</p><p&

24、gt;  The level of co-channel interference received within a given cell is also dependent on the number of active co-channel cells at any instant of time. As mentioned before, co-channel cells are grouped into tiers with

25、respect to a particular cell of interest. The number of co-channel cells in a given tier depends on the tier order and the geometry adopted to represent the shape of a cell (e.g., the coverage area of an individual base

26、station). For the classic hexagonal shape, the closest co-channel</p><p>  Co-channel interference is recognized as one of the major factors that limits the capacity and link quality of a wireless communicat

27、ions system and plays an important role in the tradeoff between system capacity (large-scale system issue) and link quality (small-scale issue). For example, one approach for achieving high capacity (large number of user

28、s), without increasing the bandwidth of the RF spectrum allocated to the system, is to reduce the channel reuse distance by reducing the cluster siz</p><p>  The level of interference within a cellular syste

29、m at any time is random and must be simulated by modeling both the RF propagation environment between cells and the position location of the mobile users. In addition, the traffic statistics of each user and the type of

30、channel allocation scheme at the base stations determine the instantaneous interference level and the capacity of the system.</p><p>  The effects of co-channel interference can be estimated by the signal-to

31、interference ratio (SIR) of the communication link, defined as the ratio of the power of the desired signal S, to the power of the total interference signal, I. Since both power levels S and I are random variables due to

32、 RF propagation effects, user mobility and traffic variation, the SIR is also a random variable. Consequently, the severity of the effects of co-channel interference on system performance is frequently analyz</p>

33、<p><b>  (17.2)</b></p><p>  Where is the probability density function (pdf) of the SIR. Note the distinction between the definition of a link outage probability, that classifies an outa

34、ge based on a particular bit error rate (BER) or Eb/N0 threshold for acceptable voice performance, and the system outage probability that considers a particular SIR threshold for acceptable mobile performance of a typica

35、l user.</p><p>  Analytical approaches for estimating the outage probability in a cellular system, as discussed in Chapter 11, require tractable models for the RF propagation effects, user mobility, and traf

36、fic variation, in order to obtain an expression for . Unfortunately, it is very difficult to use analytical models for these effects, due to their complex relationship to the received signal level. Therefore, the est

37、imation of the outage probability in a cellular system usually relies on simulation, which</p><p>  蜂窩無線通信系統(tǒng)的仿真</p><p>  ——摘自《通信系統(tǒng)仿真原理與無線應(yīng)用》第672頁-676頁</p><p><b>  1 、概述</b&

38、gt;</p><p>  人們開發(fā)出了許多無線通信系統(tǒng),為不同的運(yùn)行環(huán)境中的固定用戶或移動用戶提供了接入到通信基礎(chǔ)設(shè)施的手段。當(dāng)今大多數(shù)無線通信系統(tǒng)都是基于蜂窩無線電概念之上的。蜂窩通信系統(tǒng)允許大量移動用戶無縫地、同時地利用有限的射頻(radio frequency,RF)頻譜與固定基站中的無線調(diào)制解調(diào)器通信。基站接收每一個移動臺發(fā)送來的射頻信號,并把他們轉(zhuǎn)換到基帶或者帶寬微波鏈路,然后傳送到移動交換中心(MS

39、C),再由移動交換中心連入公用交換電話網(wǎng)(PSTN)。同樣的,通信信號也可以從PSTN傳送到基站,再從這里發(fā)送個移動臺。蜂窩系統(tǒng)可以采用頻分多址(FDMA)、時分多址(TDMA)、碼分多址(CDMA)或者空分多址(SDMA)中的任何一種技術(shù)。</p><p>  無線通信鏈路具有惡劣的物理信道特征,比如由于傳播途徑中有再大的障礙物,會產(chǎn)生時變多徑和陰影。此外,無線蜂窩系統(tǒng)的性能還會受限于來自其他用戶的干擾,因此,

40、對干擾進(jìn)行準(zhǔn)確的建模就很重要。很難用簡單的解析模型來描述復(fù)雜的信道條件,雖然有集中模型確實(shí)易于解析求解并與信道實(shí)測數(shù)據(jù)比較相符,不過,即使建立了完美的信道解析模型,再把差錯控制編碼、均衡器、分集及網(wǎng)絡(luò)模型等因素都考慮再鏈路中之后,要得出鏈路性能的解析在絕大多數(shù)情況下任然是很困難的甚至是不可能的。因此,在分析蜂窩通信鏈路的性能時,常常需要進(jìn)行仿真。</p><p>  跟無線鏈路一樣,對蜂窩無線系統(tǒng)的性能分析使用仿

41、真建模時很有效的,這是由于在時間和空間上對大量的隨機(jī)事件進(jìn)行建模非常困難。這些隨機(jī)事件包括用戶的位置、系統(tǒng)中同時通信的用戶個數(shù)、傳播條件、每個用戶的干擾和功率級的設(shè)置(power level setting)、每個用戶的話務(wù)量需求等,這些因素共同作用,對系統(tǒng)中的一個典型用戶的總的性能產(chǎn)生影響。前面提到的變量僅僅是任一時刻決定系統(tǒng)中的某個用戶瞬態(tài)性能的許多關(guān)鍵物理參數(shù)中的一小部分。蜂窩無線系統(tǒng)指的是,在地理上的服務(wù)區(qū)域內(nèi),移動用戶和基站的

42、全體,而不是將一個用戶連接到一個基站的單個鏈路。為了設(shè)計(jì)特定大的系統(tǒng)級性能,比如某個用戶在整個系統(tǒng)中得到滿意服務(wù)的可能性,就得考慮在覆蓋區(qū)域內(nèi)同時使用系統(tǒng)的多個用戶所帶來的復(fù)雜性。因此,需要仿真來考慮多個用戶對基站和移動臺之間任何一條鏈路所產(chǎn)生的影響。</p><p>  鏈路性能是一個小尺度現(xiàn)象,它處理的是小的局部區(qū)域內(nèi)或者短的時間間隔內(nèi)信道的順時變化,這種情況下可假設(shè)平均接收功率不變。在設(shè)計(jì)差錯控制碼、均衡器

43、和其他用來消除信道所產(chǎn)生的瞬時影響的部件時,這種假設(shè)時合理的。但是,在大量用戶分布在一個廣闊的地理范圍內(nèi)時,為了確定整個系統(tǒng)的性能,有必要引入大尺度效應(yīng)進(jìn)行分析,比如在大的距離范圍內(nèi)考慮單個用戶受到的干擾和信號電平的統(tǒng)計(jì)行為時,忽略瞬時信道特征。我們可以將鏈路級仿真看作通信系統(tǒng)性能的微調(diào),而將系統(tǒng)級仿真看作時整體質(zhì)量水平粗略但很重要的近似,任何用戶在任何時候都可預(yù)計(jì)達(dá)到這個水平。</p><p>  通過讓移動臺

44、在不同的服務(wù)區(qū)內(nèi)共享或者復(fù)用通信信道,蜂窩系統(tǒng)能達(dá)到較高的容量(比如,為大量的用戶服務(wù))。信道復(fù)用會導(dǎo)致公用同一信道的用戶之間產(chǎn)生同頻干擾,這是影響蜂窩系統(tǒng)容量和性能的主要制約因素之一。因此,在設(shè)計(jì)一個蜂窩系統(tǒng)時,或者在分析和設(shè)計(jì)消除同頻干擾負(fù)面影響的系統(tǒng)方法時,需要正確理解同屏干擾對容量和性能的影響。這些影響主要取決于通信系統(tǒng)的狀況,如共享信道的用戶數(shù)和他們的位置。其他與傳播信道條件關(guān)系更密切的方面,如路徑損耗、陰影衰落(或叫陰影)、

45、天線輻射模式等對系統(tǒng)性能的影響也很重要,因?yàn)檫@些影響也歲特定用戶的位置而改變。本章我們將討論在同頻干擾情況下,包括一個典型系統(tǒng)中的天線和傳播的影響。盡管本章考慮的例子比較簡單,但提出的分析方法可以容易地進(jìn)行擴(kuò)展,以包括蜂窩系統(tǒng)的其他特征。</p><p><b>  2、蜂窩無線系統(tǒng)</b></p><p><b>  系統(tǒng)級描述:</b><

46、;/p><p>  如圖17-1所示,通過把地理區(qū)域分成一個個稱為小區(qū)的部分,蜂窩系統(tǒng)可以在這個區(qū)域內(nèi)提供無線覆蓋。把可用的頻譜也分成很多信道,每個小區(qū)分配一組信道,每個小區(qū)中的基站都配備了可以同移動用戶進(jìn)行通信的無線調(diào)制解調(diào)器。從基站到移動臺這個發(fā)送方向使用的射頻信道稱為前向信道,而從移動臺到</p><p>  基站這個發(fā)送方向使用的信道稱為反向信道。前向信道和反向信道共同構(gòu)成了雙工蜂窩信

47、道。當(dāng)使用頻分雙工(FDD,frequency division duplex)時,前向信道和反向信道使用不同的頻率;當(dāng)使用時分雙工時(TDD,time division duplex)時,前向信道和反向信道占用相同的頻率,但使用不同的時隙進(jìn)行傳送。</p><p>  高容量的蜂窩系統(tǒng)在小區(qū)間進(jìn)行頻率復(fù)用,同頻小區(qū)(共用相同頻率的小區(qū))之間要離開足夠的距離以減輕同頻干擾。如圖17-2所示,N個小區(qū)構(gòu)成一個簇(c

48、luster,又叫“區(qū)群”),覆蓋地理上的服務(wù)區(qū),以實(shí)現(xiàn)信道復(fù)用,N是簇的大小。</p><p>  把服務(wù)區(qū)內(nèi)可用的無線頻譜都分配給每一個簇,使同一個簇內(nèi)的小區(qū)不共用相同的信道。如果服務(wù)區(qū)內(nèi)的可用頻譜由M個信道構(gòu)成,用戶均勻分布在服務(wù)區(qū)內(nèi),則每個小區(qū)可以分得M/N個信道。因?yàn)榇卦诜?wù)區(qū)內(nèi)復(fù)制,復(fù)用信道將導(dǎo)致同頻小區(qū)的層狀結(jié)構(gòu)(tier)。同頻基站和移動臺之間的射頻能量傳播,會引起同頻干擾。例如,如果一個移動臺同

49、時接收來自本地小區(qū)基站的信號和鄰近層的同頻小區(qū)基站產(chǎn)生的信號,就會產(chǎn)生同頻干擾。本例中,其中一個同頻前向鏈路信號(基站到移動臺的傳輸)是我們的有用信號,移動臺接收到的其他同頻信號就構(gòu)成了對接機(jī)的同頻干擾,同頻干擾的功率級與同頻小區(qū)之間的分隔距離密切相關(guān)。如果小區(qū)建模為如圖17-2所示的六邊形。兩個同頻小區(qū)中心之間的最小距離(叫做復(fù)用距離)等于</p><p> ?。?7.1)式中R式小區(qū)的最大半徑(這個六邊形內(nèi)接

50、在半徑為R的圓中)。因此,我們馬上可以從圖17-2看出,小簇(小復(fù)用距離)會引起同頻小區(qū)間的大干擾。</p><p>  在一個指定小區(qū)中接收到的同頻干擾的電平,還取決于任一時刻活躍的同頻小區(qū)的數(shù)量。如前所述,在我們感興趣的那個特定小區(qū)周圍,同頻小區(qū)組成一個個的層。在一個給定層中,同頻小區(qū)的數(shù)量取決于層的階次和用來表示小區(qū)的幾何形狀(如一個基站覆蓋的面積)。對于典型的六邊形,最近的同頻小區(qū)在第一層,有六個同頻小區(qū)

51、,第二層有12個,第三層有18個,以此類推。因此,總的同頻干擾時從所有層的全部同頻小區(qū)發(fā)送出的同頻干擾信號的總和。但是第一層的同頻小區(qū)對總的干擾時從所有層的全部同頻小區(qū)發(fā)送出的同頻干擾信號的總和。但是第一層的同頻小區(qū)對總的干擾有較強(qiáng)的影響,因?yàn)樗鼈兏拷鼫y量干擾的小區(qū)。</p><p>  人們認(rèn)識到同頻干擾時制約無線通信系統(tǒng)的容量和鏈路質(zhì)量的主要因素之一。在系統(tǒng)容量(大尺度系統(tǒng)問題)和鏈路質(zhì)量(小尺度系統(tǒng)問題)

52、之間作折中時,它起到舉足輕重的作用。例如,在不增加分配給系統(tǒng)的無線頻譜帶寬的前提下,得到高容量(大量的用戶)的一種措施是,通過減小蜂窩系統(tǒng)簇的大小N,來縮短信道復(fù)用距離。然而,減少簇大小又增加了同頻干擾,這會降低鏈路質(zhì)量。</p><p>  蜂窩系統(tǒng)中的干擾電平在任何時候都是隨機(jī)的,必須通過對蜂窩之間的射頻傳播環(huán)境和移動用戶的位置進(jìn)行建模才能仿真。另外,每個用戶話務(wù)量的統(tǒng)計(jì)特性以及基站中信道分配方案的類型決定了

53、瞬時干擾電平和系統(tǒng)的容量。</p><p>  同頻干擾的影響可以用通信鏈路的信干比(SIR)來估計(jì),這里信干比定義為有用信號的功率S與總干擾信號的功率I之比。由于無線傳播影響,用戶移動性以及話務(wù)量的變化,功率級S和I都是隨機(jī)變量,SIR也是一個隨機(jī)變量。因此,同頻干擾對系統(tǒng)性能產(chǎn)生影響的嚴(yán)重程度,通常用系統(tǒng)的中斷概率來進(jìn)行分析。在這個特定場合下,中斷概率定義為SIR低于給定閾值的概率,即</p>

54、<p><b> ?。?7.2)</b></p><p>  其中 是SIR的概率密度函數(shù)。要注意鏈路中斷概率和系統(tǒng)中斷概率之間的區(qū)別,前者是根據(jù)可接受的聲音性能所需的特定誤比特率(BER)或者Eb/N0閾值,確定是否為中斷,而后者考慮的是一個典型用戶可接受的移動性能所需的SIR閾值。</p><p>  如第11章所述,用來估計(jì)蜂窩系統(tǒng)中斷概率

55、的解析方法,需要已知射頻傳播影響、用戶移動性和話務(wù)量變化等隨機(jī)量的易于處理的模型,以求得 的解析表達(dá)式。然而,由于這些影響和接受信號電平間的復(fù)雜關(guān)系,很難對這些影響采用解析模型。因此,主要靠仿真來估計(jì)蜂窩系統(tǒng)的中斷概率,仿真還為分析提供了靈活性。本章我們給出了蜂窩通信系統(tǒng)的簡單仿真示例,著重考慮通信系統(tǒng)的一些系統(tǒng)方面的問題,包括多用戶性能、話務(wù)量工程和信道復(fù)用。為了進(jìn)行系統(tǒng)級仿真,要考慮單個通信鏈路的許多方面,包括信道模型

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論