光伏發(fā)電系統(tǒng)外文翻譯--光伏發(fā)電系統(tǒng)的新型控制方案_第1頁
已閱讀1頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、<p>  英文1300單詞,7000英文字符,中文2150漢字</p><p>  出處:Khatib T T N, Mohamed A, Amin N. A new controller scheme for photovoltaics power generation systems[J]. European Journal of Scientific Research, 2009, 33(3):

2、 515-524.</p><p><b>  外文文獻(xiàn): </b></p><p>  A New Controller Scheme for Photovoltaics Power Generation Systems</p><p>  Khatib T T N, Mohamed A, Amin N</p><p>

3、;<b>  Abstract</b></p><p>  This paper presents a new controller scheme for photovoltaic (PV) power generation systems. The proposed PV controller scheme controls both the boost converter and the

4、 battery charger by using a microcontroller in order to extract maximum power from the PV array and control the charging process of the battery. The objective of the paper is to present a cost effective boost converter d

5、esign and an improved maximum power point tracking algorithm for the PV system. A MATLAB based simulation model o</p><p>  1.Introduction</p><p>  Recently, the installation of PV generation sys

6、tems is rapidly growing due to concerns related to environment, global warming, energy security, technology improvements and decreasing costs. PV generation system is considered as a clean and environmentally-friendly so

7、urce of energy. The main applications of PV systems are in either standalone or grid connected configurations. Standalone PV generation systems are attractive as indispensable electricity source for remote areas. However

8、, PV generati</p><p>  The solar cell V-I characteristics is nonlinear and varies with irradiation and temperature. But there is a unique point on the V-I and P-V curves, called as the maximum power point (M

9、PP), at which at this point the PV system is said to operate with maximum efficiency and produces its maximum power output. The location of the MPP is not known but can be traced by either through calculation models or s

10、earch algorithms. Thus, maximum power point tracking (MPPT) techniques are needed to maintain th</p><p>  The proposed standalone PV controller implementation takes into account mathematical model of each co

11、mponent as well as actual component specification. The dc–dc or boost converter is the front-end component connected between the PV array and the load. The conventional boost converter may cause serious reverse recovery

12、problem and increase the rating of all devices. As a result, the conversion efficiency is degraded and the electromagnetic interference problem becomes severe under this situation</p><p>  The proposed new c

13、ontroller scheme for the standalone PV system controls both the boost converter and the charge controller in two control steps. The first step is to control the boost converter so as to extract the maximum power point of

14、 the PV modules. Here, a high step-up converter is considered for the purpose of stepping up the PV voltage and consequently reducing the number of series-connected PV modules and to maintain a constant dc bus voltage. A

15、 microcontroller is used for data acquisit</p><p>  2. Design of the Proposed Photovoltaic System</p><p>  Most of the standalone PV systems operate in one mode only such that the PV system char

16、ges the battery which in turns supply power to the load. In this mode of operation, the life cycle time of the battery may be reduced due to continuous charging and discharging of the battery. The proposed standalone PV

17、system as shown in terms of a block diagram in Figure 1 is designed to operate in two modes: PV system supplies power directly to loads and when the radiation goes down and the produced energy </p><p>  3. M

18、ethodology</p><p>  For the purpose of estimating the mathematical models developed for the proposed standalone PV system, simulations were carried in terms of the MATLAB codes. Each PV module considered in

19、the simulation has a rating of 80 Watt at 1000 W/m2, 21.2 V open circuit voltage, 5A short circuit current. The PV module is connected to a block of batteries with of sizing 60 Ah, 48 V. </p><p>  4. Results

20、 and Discussion</p><p>  The simulation results of the standalone PV system using a simple MPPT algorithm and an improved boost converter design are described in this section. Simulations were carried out fo

21、r the PV system operating above 30o C ambient temperature and under different values of irradiation. Figure 2 shows the PV array I-V characteristic curve at various irradiation values. From the figure, it is observed tha

22、t the PV current increase linearly as the irradiation value is increased. However, the PV voltage</p><p>  Figure 4 compares the PV array P-V characteristics obtained from using the proposed MPPT algorithm

23、and the classical MPPT P&O algorithm. From this figure, it can be seen that by using the proposed MPPT algorithm, the operating point of PV array is much closer to the MPP compared to the using the classical P&O

24、 algorithm.</p><p>  In addition, the proposed boost converter is able to give a stable output voltage as shown in Figure 5. In terms of PV array current, it can be seen from Figure 6 that the PV current is

25、closer to the MPP current when using the improved MPPT algorithm. Thus, the track operating point is improved by using the proposed MPPT algorithm. In terms of efficiency of the standalone PV system which is calculated b

26、y dividing the load power with the maximum power of PV array, it is noted that the efficiency </p><p>  5. Conclusion</p><p>  This paper has presented an efficient standalone PV controller by i

27、ncorporating an improved boost converter design and a new controller scheme which incorporates both a simple MPPT algorithm and a battery charging algorithm. The simulation results show that the PV controller using the s

28、imple MPPT algorithm has provided more power and better efficiency (91%) than the classical P&O algorithm. In addition, the proposed boost converter design gives a better converter efficiency of about 93%. Such a <

29、;/p><p><b>  中文譯文:</b></p><p>  光伏發(fā)電系統(tǒng)的新型控制方案</p><p>  摘要:本文提出了一種用于光伏(PV)發(fā)電系統(tǒng)的新新型控制方案。所提出的計(jì)劃可以控制光伏控制器升壓轉(zhuǎn)換器和一個(gè)微控制器使用,以提取光伏陣列最大功率和控制電池的充電過程。本文的目的是提出一個(gè)符合成本效益的升壓轉(zhuǎn)換器的設(shè)計(jì)方案和改進(jìn)的最大功

30、率點(diǎn)跟蹤的光伏系統(tǒng)算法。提出了基于MATLAB的獨(dú)立光伏發(fā)電系統(tǒng)仿真模型并給出評(píng)價(jià),以確保在最大功率點(diǎn)操作該系統(tǒng)的可行性。</p><p><b>  1.引言</b></p><p>  最近,由于環(huán)境、全球變暖、能源安全、技術(shù)改進(jìn)和降低成本有關(guān)的問題,PV發(fā)電系統(tǒng)的安裝正在快速增長。光伏發(fā)電系統(tǒng)被認(rèn)為是一種清潔環(huán)保的能源。光伏系統(tǒng)的主要應(yīng)用是獨(dú)立或并網(wǎng)配置。獨(dú)立的

31、光伏發(fā)電系統(tǒng)作為偏遠(yuǎn)地區(qū)不可或缺的電源是有吸引力的。然而,PV發(fā)電系統(tǒng)具有兩個(gè)主要問題,其涉及約9至12%的低轉(zhuǎn)換效率,特別是在低照射條件下,并且由PV陣列產(chǎn)生的電功率的量隨天氣條件連續(xù)變化。因此,進(jìn)行了許多研究工作以增加從PV陣列產(chǎn)生的能量的效率。</p><p>  太陽能電池V-I特性是非線性的,隨著輻射和溫度而變化。但是在V-I和P-V曲線上有一個(gè)獨(dú)特的點(diǎn),稱為最大功率點(diǎn)(MPP),在該點(diǎn)PV系統(tǒng)被稱為以

32、最大效率運(yùn)行并產(chǎn)生其最大功率輸出。MPP的位置是未知的,但可以通過計(jì)算模型或搜索算法來跟蹤。因此,需要最大功率點(diǎn)跟蹤(MPPT)技術(shù)來將PV陣列的工作點(diǎn)維持在其MPP。在文獻(xiàn)中已經(jīng)提出了許多MPPT技術(shù),其中技術(shù)在許多方面各有不同,包括簡單性、收斂速度、硬件實(shí)現(xiàn)和有效范圍。然而,最廣泛使用的MPPT技術(shù)是擾動(dòng)和觀察(P&O)方法。本文提出了一個(gè)簡單的MPPT算法,可以輕松實(shí)現(xiàn)和采用低成本光伏應(yīng)用。本文的目的是設(shè)計(jì)一種改進(jìn)的MPPT方法的

33、新型PV控制器方案。</p><p>  提出的獨(dú)立光伏控制器考慮到實(shí)現(xiàn)數(shù)學(xué)模型每個(gè)組件以及實(shí)際的組件規(guī)范。DC-DC或升壓轉(zhuǎn)換器是連接在PV陣列和負(fù)載之間的前端組件。傳統(tǒng)的升壓轉(zhuǎn)換器可能導(dǎo)致嚴(yán)重的反向恢復(fù)問題,并增加所有器件的額定值。因此,在這種情況下,轉(zhuǎn)換效率降低,并且電磁干擾問題變得嚴(yán)重。為了提高轉(zhuǎn)換效率,若干研究人員對(duì)許多改進(jìn)的升壓轉(zhuǎn)換器拓?fù)浣Y(jié)構(gòu)進(jìn)行了研究。電壓鉗位技術(shù)已被納入轉(zhuǎn)換器的設(shè)計(jì),以克服輸出二極

34、管的嚴(yán)重反向恢復(fù)問題。在本文中,重點(diǎn)也是給出升壓轉(zhuǎn)換器設(shè)計(jì)。獨(dú)立光伏系統(tǒng)的另一個(gè)重要組件是充電控制器,用于避免電池由于過多充電和過多放電而可能造成的損壞。研究表明,在不使用充電控制器的情況下,電池的壽命可能會(huì)下降。</p><p>  所提出的用于獨(dú)立光伏系統(tǒng)的新控制器方案在兩個(gè)控制步驟中控制升壓轉(zhuǎn)換器和充電控制器。第一步是控制升壓轉(zhuǎn)換器,以提取光伏組件的最大功率點(diǎn)。在這里,高升壓型轉(zhuǎn)換器被認(rèn)為是對(duì)加強(qiáng)光伏電壓起

35、作用,從而降低了串聯(lián)光伏組件的數(shù)量,并保持一個(gè)恒定的直流總線電壓的目的。微控制器用于獲取PV組件工作電流和電壓的數(shù)據(jù)采集,也用于對(duì)MPPT算法進(jìn)行編程??刂破鞑捎妹}沖寬度調(diào)制(PWM)技術(shù)以隨著PV電壓降低而增加所產(chǎn)生的脈沖的占空比,以便獲得接近最大功率點(diǎn)的穩(wěn)定的輸出電壓和電流。第二控制步驟是為了保護(hù)電池而控制充電控制器。通過使用PWM技術(shù)控制充電電流并在充電期間控制電池電壓,可以避免高于放氣電壓的電壓。</p><

36、p>  2.光伏系統(tǒng)設(shè)計(jì)的提出</p><p>  大多數(shù)獨(dú)立的光伏系統(tǒng)僅以一種模式操作,使得光伏系統(tǒng)對(duì)電池充電,電池又向負(fù)載供電。在這種操作模式中,由于電池的連續(xù)充電和放電,電池的壽命周期時(shí)間可能減少。根據(jù)圖1中的框圖所示,所提出的獨(dú)立的光伏系統(tǒng)被設(shè)計(jì)成兩種模式操作:光伏系統(tǒng)直接向負(fù)載供電,而當(dāng)輻射下降并且所產(chǎn)生的能量不足時(shí),光伏系統(tǒng)將充電電池,繼而向負(fù)載供電。為了管理這些操作模式,通過觀察光伏輸出功率,

37、將控制器連接到升壓轉(zhuǎn)換器。</p><p><b>  3.計(jì)算方法</b></p><p>  為了估算所提出的獨(dú)立光伏系統(tǒng)開發(fā)的數(shù)學(xué)模型這一目的,根據(jù)MATLAB代碼進(jìn)行了模擬。在模擬中每個(gè)光伏組件考慮在1000W/m2、21.2V開路電壓、5A短路電流下的額定功率為80瓦特。光伏組件連接到尺寸為60Ah、48V的電池組。 </p><p>

38、;<b>  4.結(jié)果與討論</b></p><p>  本節(jié)描述了使用簡單MPPT算法和改進(jìn)的升壓轉(zhuǎn)換器設(shè)計(jì)的獨(dú)立光伏系統(tǒng)的仿真結(jié)果。對(duì)在高于30℃的環(huán)境溫度和在不同的照射值下操作的PV系統(tǒng)進(jìn)行模擬。圖2示出了在各種照射值下的PV陣列I-V特性曲線。從圖中可以看出,隨著照射值增加,PV電流線性增加。然而,隨著照射增加,PV電壓以對(duì)數(shù)圖案增加。圖3示出了在各種溫度值下的PV陣列I-V特性曲線

39、。從圖中注意到,PV電壓隨著環(huán)境溫度的升高而降低。</p><p>  圖4比較了使用提出的MPPT算法和經(jīng)典MPPT P&O算法獲得的PV陣列P-V特性。從該圖可以看出,通過使用所提出的MPPT算法,與使用經(jīng)典P&O算法相比,PV陣列的操作點(diǎn)更接近MPP。</p><p>  此外,所提出的升壓轉(zhuǎn)換器能夠提供如圖5所示的穩(wěn)定的輸出電壓。關(guān)于PV陣列電流,從圖6可以看出,當(dāng)使用改進(jìn)的MPP

40、T時(shí),PV電流更接近MPP電流 算法。因此,通過使用所提出的MPPT算法可以來改善軌道操作點(diǎn)。在通過將負(fù)載功率除以PV陣列的最大功率所計(jì)算的獨(dú)立PV系統(tǒng)的效率方面,注意到與使用經(jīng)典的P&O算法相比,使用所提出的MPPT算法的系統(tǒng)的效率更好,如圖7所示。</p><p><b>  5.結(jié)論</b></p><p>  本文通過將一種改進(jìn)的升壓轉(zhuǎn)換器設(shè)計(jì)和一種集成了簡單

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論