版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p> 2050單詞,10500英文字符,3650漢字</p><p> 出處:Miyake T, Ishihara H, Shoji R, et al. Development of small-size window cleaning robot by wall climbing mechanism[J]. Isarc Proceedings, 2006.</p><p&g
2、t; SMALL-SIZE WINDOW CLEANING ROBOT BY WALL CLIMBING MECHANISM</p><p> 1. INTRODUCTION</p><p> Recently, there have been many demands for automatic cleaning system on outside surface of build
3、ings such as window glass by increasing of modern architectures. Some customized window cleaning machines have already been installed into the practical use in the field of building maintenance. However, almost of them
4、are mounted on the building from the beginning and they needs very expensive costs. Therefore, requirements for small, lightweight and portable window cleaning robot are also growing i</p><p> 1) It should
5、be small size and lightweight for portability.</p><p> 2) Clean the corner of window because fouling is left there often.</p><p> 3) Sweep the windowpane continuously to prevent from making st
6、riped pattern on a windowpane</p><p> 4) Automatic operation during moving on the window.</p><p> The locomotion mechanism must be chosen to satisfy these demands, especially later two subject
7、s. Here locomotion mechanism means the combination of adhering mechanism, traveling mechanism and a mechanism for changing a traveling direction.</p><p> First requirement brought the following specificatio
8、ns for designing the window cleaning robot.</p><p> ★Weight: less than 5kg, including the weight of battery and washing water,</p><p> ★Size: 300mm x 300mm x 100mm.</p><p> These
9、 were also defined by the results of surveying the demands from the cleaning companies. In previous researches, we have proposed outline of mechanical system for window cleaning robot for filling above mentioned demands.
10、 And we confirmed basic properties and its possibility by the experiments. That mechanical system consists of two-wheel centered differential drive specialized in making a right-angled turn at the corner of window and a
11、suction cup with vacuum pomp as adhering method. By thi</p><p> vertical window with adhering smoothly. Fig. 1 is the rendering at a scene of practical use of proposed window cleaning robot. This robot adhe
12、res on a windowpane with cleaning as moving on large windows.</p><p> This paper deals with traveling control system in order that above mentioned mechanical system of window cleaning robot can be operated
13、automatically. We know a lot of studies on wall climbing robot including window cleaning robot by various research groups[1]-[10], but there are few researches and development of motion control of wall climbing robot. Ho
14、wever the environment of robot which moves on vertical or inclined plane is quite different from the robot moves on horizontal plane at conditio</p><p> In this paper, we explain window cleaning robot insta
15、lled traveling control system and report results of basic traveling experiments and autonomous wiping motion on vertical window majored quantitatively. This paper includes four chapters. The second chapter illustrates pr
16、ototyped mechanical systems used for experiments and moving path of window cleaning. The third chapter shows experimental result of basic traveling control and window wiping motion by comparing to with or without of moti
17、oned co</p><p> 2. MECHANICAL SYSTEMS</p><p> In this study, we use climbing mechanism which consists of the two-wheel locomotion mechanism and adhering mechanism by a suction cup. This mechan
18、ism is reported in previous researches [11]. This mechanism was designed under focusing on the window cleaning robot for just a single windowpane. It is apparently necessary to cross over the window frame or joint line t
19、o use it at any window, but the single windowpanes like as a show window also exist as an important application.</p><p> A. Traveling path </p><p> In order to sweep
20、all over the window plane, two types of traveling paths shown in Fig. 2 were considered. Here we adopted type (A) in Fig. 2 because of energy efficiency and cleaning affectivity. Type (A) in Fig. 2 principally involves h
21、orizontal direction movements. The robot will climb up just once. On the other hand path of type (B) consists of mainly vertical direction movements, i.e. the robot must continue to climb up and go down the window recurs
22、ively. Therefore type (A) is better on ene</p><p> B. Locomotion Mechanism and robot body</p><p> The robot moves on windowpane by two-wheel locomotion mechanism with holing the body on the su
23、rface using a suction cup vacuumed by a pump. The most</p><p> important point in the mechanism is the friction coefficient of suction cup and tire against the adhering surface, e.g. high friction between t
24、he tire and the surface of window can transmits the torque, and low friction between the suction cup and the surface of window can achieves to move the robot with holding the body on the window. We selected PTFE (Polytet
25、rafluoroethylene) for the materials of surface</p><p> of a suction cup, and silicon rubber for the material of tires.</p><p> C. Turning Mechanism and robot body </p><p> Tur
26、ning mechanism is a key to clean even at the corner of window. Fig. 3 shows the scenes that the robot changes its traveling direction at the corner. Fig. 3-(a) shows a usual turning way like as turning of motorcars. In t
27、his case, since the robot changes a direction as tracing an arc, it can not reach the end of corner of window. It needs the robot can not move along desired lines. In consequence, the robot can not cover the window surfa
28、ce without any hole, or the robot come to dead end by goi</p><p> It seems that this problem is caused by the gravity whose direction intersects with traveling direction of the robot at grade. It is a parti
29、cular problem in traveling control of the robot moves on vertical or inclined plane like as windows. To determine this problem, we adopted attitude control using acceleration sensor. This chapter explains its control met
30、hods and outline of electronic system. In this control, input value is the desired attitude angle θ0, output value is attitude angle of the </p><p> In order to control the attitude, the robot measures a di
31、rection of gravity since the related angle between gravity direction and robot body gives attitude angle. When the</p><p> robot moves on the window, there is a possibility that the sensor detect convoluted
32、 value both the acceleration gravity and acceleration by the motion of the robot. But the robot will be operated with static and low velocity. Therefore the acceleration by motion of the robot is ever-smaller than accele
33、ration gravity. So, in this control, we do not consider complicated process as follows to clean the corner by such robot: first, the robot goes into a corner, next it moves back the distance to tur</p><p>
34、3. EXPERIMENTS AND DISCUSSIONS</p><p> This chapter reports experimental result of motion control of prototyped window cleaning robot installed attitude controller illustrated in Chapter III. This experimen
35、t</p><p> consists of two kinds of experiments. One is measurement of performance of attitude control when the robot moves to horizontal direction and elevation angle of 45 degrees. The other is an experien
36、ce of window wiping operation with attitude controller on actual window glass. The robot was examined on the window stood vertically. The glass of the window is flat, clear and the thickness of 8mm. The glass is held by
37、window frame made of aluminium. In all the experiment, the motions of robot measured</p><p> Test 1: Horizontal direction</p><p> Moving of horizontal direction was measured as two conditions;
38、 one is without attitude control and the other is with attitude control using an acceleration sensor. Each experiment is measured in same position on the window, and same moving distance of 1.8 meters. At the starting po
39、int, the robot is attached on the window direct to horizontal direction shown as Fig. 14-(A). Fig. 15 shows motion trajectory both controlled and uncontrolled by attitude control system. A square in the figure represen&l
40、t;/p><p> The trajectory of controlled case shift 0.226m of the –Y direction at goal point (X=1.80m). The trajectory of uncontrolled case shift 0.862m of the –Y direction at goal point (X=1.80m).Then the attit
41、ude of uncontrolled robot inclines to clockwise as the robot runs, shown in Fig. 16. On the other hand, attitude angle of controlled robot is stabilized around 0 degree with a margin of error of plus or minus 5 degrees a
42、s shown in Fig. 16</p><p> Test 2: Direction of elevation angle of 45 degrees</p><p> In this experiment, control results of moving direction of elevation angle of 45 degrees were measured as
43、test 1, shown in Fig 14-(B). Fig. 17 shows motion trajectory of climbing to direction of elevation angle of 45 degrees. A square in the figure represents the position and attitude of robot body recorded every 1 second. T
44、he average moving velocity of controlled case is 0.138 m/s; uncontrolled case is 0.153 m/s. Fig. 18 shows that attitude angle of the robot controlled is constant and stabiliz</p><p> Test 3: Window Wiping M
45、otion</p><p> Fig. 19 indicates moving trajectory of window wiping motion when the robot moved on the window toward a path shown in Fig. 8. The robot was started from the corner of lower left and climbed up
46、 toward window frame of left side, and it ran to horizontal direction toward window frame of top, next, the robot went down as the distance less than length of robot body. At the each corner, the robot changed the traver
47、sing direction at right angle using specialized turning mechanism. A square in the figur</p><p> 4. CONCLUSION </p><p> This paper described an application of small-size and light weight wall
48、climbing robots for window cleaning. The window cleaning robot consists of two-wheel locomotion mechanism and a suction cup. This robot moved on the window smoothly with adhering by a suction cup. And this robot has a fu
49、nction to change a traveling direction at right angle at the corner of the window. Above mentioned window cleaning robot was prototyped and its mechanism and some of characteristics were illustrated. Next, we</p>
50、<p> those errors and it control.</p><p><b> 譯文:</b></p><p> 小型攀爬式窗戶清洗機器人</p><p><b> 簡介</b></p><p> 目前,隨著玻璃外墻建筑物的增長,人們對建筑物外墻表面(特別是玻璃外墻
51、表面)進(jìn)行自動化清洗要求的需求量也越來越大,一些專用的窗戶清洗機也已經(jīng)實際運用在了建筑維護(hù)領(lǐng)域。但是,他們之中大多數(shù)都是從一開始就要一直安裝在建筑物上面,這需要很高的費用。因此,在建筑物的維護(hù)方面,我們迫切需要一種小巧、重量輕、可攜帶的窗戶清潔機器人。根據(jù)我們對窗戶清洗機器人的要求進(jìn)行的調(diào)查的結(jié)果,為了滿足實際運用,其應(yīng)該必須具備以下幾點要求:</p><p> 1) 小巧、重量輕、便于攜帶。</p>
52、;<p> 2) 能夠清潔到的窗戶的各個角落,因為那里往往是污垢聚集地。</p><p> 3) 能夠連續(xù)式的清洗窗戶表面以防留下污垢走過的條痕。</p><p> 4) 在窗戶上能自動運行并調(diào)整前進(jìn)方向。</p><p> 選擇的運動機制必須滿足這些條件,特別是后面兩項要求。這里的運動機制是指:與窗戶表面的附著粘合機制、路線行走機制,以及改變
53、行進(jìn)方向的機制與原理。</p><p> 運用于這種領(lǐng)域的機器人應(yīng)該首先滿足以下設(shè)計要求:</p><p> ★ 重量:不超過5kg,包括電池和清洗用水的重量。</p><p> ★ 外形尺寸: 300mm x 300mm x 100mm.</p><p> 這些要求也是通過對眾多清潔公司的需要進(jìn)行調(diào)查而得出的。在以前的研究中,根據(jù)以
54、上給出的要求,我們已經(jīng)確定了窗戶清洗機器人機械系統(tǒng)的大致輪廓;通過實驗,我們也確定了這個機器的一些基本屬性和性能。這個機械系統(tǒng)包括一個用以保證在窗戶角落處正確轉(zhuǎn)向的兩輪差動驅(qū)動中心和一個能將機器吸附在窗戶表面的真空泵吸盤。有了這個機械系統(tǒng),機器人就能吸附在窗戶面上平穩(wěn)垂直的行走。如圖1所示,就是窗戶機器人在實際運用過程中的動作情況,它附著在窗玻璃上邊走邊清洗窗戶表面。</p><p> 為了上述的清潔機器人機械
55、系統(tǒng)能夠?qū)崿F(xiàn)自動操作,所以其行走控制系統(tǒng)是這篇文章主要的討論對象。我們知道有許多研究機構(gòu)對墻面爬行機器人,包括窗戶清洗機器人都做過許多研究。但是,墻面攀爬機器人的運動控制依然很少有大的進(jìn)展。機器人在垂直平面上運動和在水平面上運動所處的環(huán)境是不同的,從而其運動控制也有著很大的不同,這主要是由于其運動的方向不同,如圖1所示,小型窗戶清洗機器人工作時將受到重力的作用。</p><p> 這篇文章將介紹擦窗機器人的行走
56、控制系統(tǒng),并得出在行走實驗中其自動擦窗時垂直運動的主修定量結(jié)果。本文共有四個部分,第二部分主要介紹了實驗中清洗機原型機械系統(tǒng)和擦窗行走的路徑;第三章對清洗機器人進(jìn)行了實驗,分析了其運動控制,并通過對在有運動控制系統(tǒng)和沒有運動控制系統(tǒng)時機器的運動情況作比較給出了相關(guān)結(jié)論;而第四部分則主要是作了一個總結(jié)。</p><p><b> 機械系統(tǒng)</b></p><p>
57、在這項研究中,我們采用的攀爬機械裝置包含了一個兩輪的運動導(dǎo)向裝置和吸盤吸附裝置。這種機械裝置在之前我們已經(jīng)提到過,主要是設(shè)計用于單一窗玻璃表面的清洗工作。當(dāng)然,為了有較為廣泛的應(yīng)用,機器人理應(yīng)能夠跨越窗戶邊框或連接處以適應(yīng)各種窗戶表面的清洗,但諸如像玻璃展示窗一類的單玻璃窗戶表面的清洗依然是一個很重要的應(yīng)用領(lǐng)域。</p><p><b> 運動路徑</b></p><p
58、> 為了能夠清洗到整個玻璃窗戶表面,我們考慮了兩種清洗路徑,如圖2所示。考慮到能源效率和清潔效率的因素,這里我們采用圖2中(A)所示的路徑方案。圖2中的(A)主要是以水平運動為主,機器人將一次性爬至最高點;而(B)中的運動路徑則主要是垂直運動,機器人必須持續(xù)不斷的來回上下運動。所以,(A)所示的運動方案能更好的節(jié)約能源。除此之外,我們還必須考慮到若選擇行走路徑(B),機器人有可能在剛剛清洗干凈的地方帶來二次污染。</p&g
59、t;<p> 機械運動與機器人主體</p><p> 機器人通過兩個輪子在窗戶面上進(jìn)行運動,而真空泵驅(qū)動真空吸盤使則得整個機器人能夠緊緊吸附在玻璃表面上不掉下來。整個機器最重要的就是吸盤以及輪胎和吸附面的摩擦系數(shù),例如:輪胎與窗玻璃表面的高摩擦系數(shù)就會產(chǎn)生扭矩,而吸盤與玻璃表面較低的摩擦就能使得機器能緊貼在窗戶表面上。吸盤我們選擇的材料是PTFE (聚四氟乙烯),而輪胎的材料則是硅橡膠。<
60、/p><p> 轉(zhuǎn)向機構(gòu)與機器人主體</p><p> 轉(zhuǎn)向機械裝置是機器能在窗戶轉(zhuǎn)角處能干凈清洗的關(guān)鍵部分。如圖3所示,顯示了機器在窗角處的運動轉(zhuǎn)向情況。如圖3-(a)所示,采用的是一種常見的方法,機器人如同汽車一樣在窗角處轉(zhuǎn)向。在這種情況下,因為機器人是弧線形轉(zhuǎn)向,使得其并不能清洗到轉(zhuǎn)角的邊角處,機器人是不能按照這種運動軌跡運動的。因此,機器人并不能清洗整個玻璃表面而不留下一點漏洞,或
61、許在轉(zhuǎn)向之前有可能會卡死在轉(zhuǎn)角處而不能繼續(xù)運動,如圖8所示。</p><p> 似乎導(dǎo)致這樣的問題出現(xiàn)好像是因為重力的方向與行駛在窗戶表面的機器人的方的運動向相交所導(dǎo)致的。這個問題是機器人要能在垂直光滑的表面上(如玻璃窗)運動的一個典型的問題。為了解決這個問題,我們采用的一種加速度傳感器來調(diào)整機器人的行走姿勢。本章主要是解釋它的控制方法和大致的電子控制系統(tǒng)組成。在此控制,輸入值是理想姿態(tài)角θ0,而輸出角的值是其
62、與運動方向之間的夾角θ,它由加速度傳感器所測得,其值如表2所示。傳感器安裝在機器人的位置可見圖10。 </p><p> 為了能夠控制這個角度,機器人通過測量相關(guān)角度與重力方向的夾角來測得并給出正確的方向和角度。當(dāng)機器人在窗戶玻璃上移動的時候,安裝在機器人身上的傳感器就會隨時監(jiān)測機器人運動方向和其重力加速度方向錯綜復(fù)雜的值,但是,機器人的操作是很平穩(wěn)的,其運動的速度也是較低的。因此,機器人的運動加速度要比重力加
63、速度小得多。所以,在這個控制,我們認(rèn)為這種機器人要清洗拐角處并不需要考慮以下復(fù)雜的過程:首先,當(dāng)機器人到達(dá)一個角落的時候,在它移動一段距離的時候再轉(zhuǎn)過來,然后轉(zhuǎn)過一個弧線改變其前進(jìn)的方向。這樣,機器人就能簡單快速的把拐角處清洗干凈。輪型機器人可以很容易地把角落處的污垢清洗干凈,但它并不能清洗拐角深處的污物。另一方面,一種四角機器人可以清潔到各個死角,但在那里并不需要轉(zhuǎn)向。為了以一種函數(shù)的方式來改變方向,如圖3-(b)所示,我們設(shè)計了一個
64、移動單元和清潔一個于中心軸相連接的旋轉(zhuǎn)清洗頭,如圖4所示。</p><p><b> 4.實驗與討論</b></p><p> 本章主要是給出了窗戶清洗機器人原型運動控制的實驗結(jié)果。這個實驗包含了兩項試驗:一項是當(dāng)機器人的運動方向與水平方向成45度時測量其姿態(tài)控制性能;而另一項實驗則是測試機器人在實際擦窗過程中姿態(tài)控制系統(tǒng)對擦窗動作的控制。 </p>
65、<p> 該機器是垂直緊貼在窗戶表面上的;玻璃窗很平很光滑也很薄,大約只有8mm;窗戶邊框是由鋁制成的。在所有的試驗中,機器人的運動情況由一個叫“大黃蜂”的數(shù)碼立體視覺相機所捕捉,這臺相機通過在暗室中測量安裝在機器人兩端的彩色光源位置來記錄機器人運動的坐標(biāo)位置,如圖9所示。 在試驗中,機器人的能量主要有安裝在機器里的電池供給,而不是通過線纜來供電的。</p><p><b>
66、測試1:水平方向</b></p><p> 我們在兩中不同的條件下對機器人水平方向的移動情況進(jìn)行了對比測試,條件一:沒有姿態(tài)控制系統(tǒng);條件二:有加速度傳感器的姿態(tài)控制系統(tǒng)。每一個實驗都是機器在玻璃窗上相同的位置、運動相等的位移(1.8m)進(jìn)行的,在開始的時候機器人的位置如圖14—(A)所示。</p><p> 如圖15,是機器人在有運動控制系統(tǒng)和沒有運動控制系統(tǒng)下運行的情況
67、,每一秒鐘記錄一次其所處的位置和運行姿態(tài)。從圖中可以看出,隨著機器人的運動其運動軌跡不斷向下彎曲;有控制系統(tǒng)的時候其平均速度為0.199 m/s,–Y方向偏移了0.226m(X方向為1.80m),沒有控制系統(tǒng)的時候其平均速度為0.374 m/s,–Y方向偏移了0.862m (X方向為1.80m)。其次,沒有控制系統(tǒng)的情況下,機器人將會順時針旋轉(zhuǎn),如圖16所示;而有控制系統(tǒng)的情況下,機器人的旋轉(zhuǎn)角基本上穩(wěn)定在0度至1度的范圍之內(nèi)。<
68、/p><p> 測試2:運動方向與水平方向成45度</p><p> 在這項實驗中,按照測試1的方法分別測試了其在與水平方向成45度角的時候的運動情況,如圖14-(B)所示。</p><p> 圖17表示了機器人在45度角時兩種條件下其爬行運動的情況,其運動位置和運動姿態(tài)每1秒鐘記錄一次 ,有控制系統(tǒng)情況下的平均速度為0.138 m/s,沒有控制系統(tǒng)時為0.153
69、 m/s。</p><p> 如圖18所示,有控制系統(tǒng)的機器人其姿態(tài)角穩(wěn)定的保持在43度,而沒有控制系統(tǒng)的時候其姿態(tài)角增加到了100度。</p><p><b> 測試3:擦窗動作</b></p><p> 如圖19所示,機器人按照圖8所示的運動路徑進(jìn)行窗戶清洗。機器人從窗戶的左下角處出發(fā)向上爬行到左上角處,再沿著窗戶邊框水平運動至右上角
70、處,然后向下移動不大于一個機身的距離再向左水平移動。在每一個拐角處,機器人都通過其特別的轉(zhuǎn)向機制轉(zhuǎn)過正確的角度保證向著正確的方向運動。</p><p> 機器人的運動位置及其姿態(tài)每一秒鐘記錄一次。</p><p><b> 4.結(jié)論</b></p><p> 本文主要描述了一種小尺寸,重量輕攀爬式玻璃窗自動清潔機器人。它由一個兩輪驅(qū)動裝置
71、和一個吸盤吸附裝置組成。通過吸盤的吸附,使其能在窗戶表面上平穩(wěn)的運動;在窗戶轉(zhuǎn)角處,他也能自動的改變行進(jìn)方向精確的實現(xiàn)轉(zhuǎn)向與清洗。首先,我們對上述清洗機器人原型及其機制和一些特點進(jìn)行了研究;然后,跟著開發(fā)姿態(tài)控制系統(tǒng)、自動操作等重要技術(shù)并應(yīng)用到該機器中;最后,做了一些實驗記錄機器人的運動軌跡以衡量垂直清洗機器人姿態(tài)控制系統(tǒng)的性能。根據(jù)這些實驗結(jié)果,我們可以知道機器人的運動時可以控制的,但是機器人的運動軌跡與期望軌跡并不是完全一樣的。因為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文原文——管道清洗機器人.pdf
- 外文原文——管道清洗機器人.pdf
- 管道清洗機器人
- 自攀爬幕墻清洗機器人機械機構(gòu)的設(shè)計與研究.pdf
- 爬壁清洗機器人的設(shè)計.docx
- 爬壁清洗機器人的設(shè)計.docx
- 攀爬連續(xù)階梯的小型機器人研究.pdf
- 智能炮管清洗機器人的研制.pdf
- 真空吸附式壁面清洗機器人畢業(yè)設(shè)計
- 真空吸附式壁面清洗機器人畢業(yè)設(shè)計
- 真空吸附式壁面清洗機器人畢業(yè)設(shè)計
- 管道射流清洗機器人的仿真研究.pdf
- 移動清洗機器人嵌入式控制系統(tǒng)研究.pdf
- 新型載體高樓壁面清洗機器人.pdf
- 外文翻譯 --一種自主攀爬機器人的設(shè)計與運動規(guī)劃
- 基于DSP的履帶式中央空調(diào)清洗機器人研究.pdf
- 水下船舶清洗機器人結(jié)構(gòu)設(shè)計
- 水下船舶清洗機器人結(jié)構(gòu)設(shè)計
- 1.爬壁清洗機器人的設(shè)計.docx
- 1.爬壁清洗機器人的設(shè)計.docx
評論
0/150
提交評論