沖壓模表面設(shè)計外文翻譯_第1頁
已閱讀1頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  附錄1 中文譯文</b></p><p><b>  沖壓模表面設(shè)計</b></p><p><b>  1、引言</b></p><p>  據(jù)悉,金屬板料沖壓模產(chǎn)品的關(guān)鍵部分是從本質(zhì)上發(fā)展模具的表面設(shè)計,在必需的質(zhì)量范圍內(nèi)找準(zhǔn)刀具表面幾何形狀以得到一個完全改進型坯料的

2、外形沖壓成形。沖壓刀具的設(shè)計原理以零件幾何學(xué)作為基本輸入數(shù)據(jù)和為了一個特定的搗實模板用工程法設(shè)法去決定操作的最小數(shù),目的是當(dāng)滿足客觀的沖壓標(biāo)準(zhǔn)時,以減少成形刀具的成本。這個工程方法為形成工藝流程設(shè)計連續(xù)運轉(zhuǎn)到最后的車間傳導(dǎo)各式各樣的試驗,直到出現(xiàn)大量的沖壓零件產(chǎn)品階段為止。在沖壓模具表面設(shè)計和可使用性塑料的金屬片之間決定著空缺變形的特性,另外應(yīng)該考慮到要形成高強度鋼以適應(yīng)降低的可模鍛性和提高彈性變形。通過符合計算機輔助設(shè)計和分析刀具的模

3、具試驗階段,會在計算機里產(chǎn)生可靠的實質(zhì)性的設(shè)計環(huán)境,以及方法和利用基于仿真有限元素的方法預(yù)先實現(xiàn)可成形性問題的刀具工程學(xué),例如,裂縫、皺紋或過分的稀釋,以及搗實模板涉及到的模具表面設(shè)計。它也能夠在清理焊縫和彈性變形后估計出最后的幾何形狀。這種工程學(xué)接近于在制圖過程中假設(shè)模具表面變形被忽略了,以及在傳統(tǒng)的鋼中,工業(yè)實踐已經(jīng)被有效的證實了這個假設(shè)有大的內(nèi)部嵌板模。這就是理想嚴(yán)格的模具概念,然而,當(dāng)提到形成新的高強度的中等濃度鋼變的可<

4、/p><p>  在這篇論文里,按照一個簡短的沖壓模設(shè)計原則的回顧,在板料金屬的形成過程中,一種估計和控制模具表面變形的計算方法被提出,在第一部分和第二部分的研究中,基于計算機輔助設(shè)計和分析定義,醋酸丁酸纖維素體成份的形成過程中,這種被提議的方法被應(yīng)用,在模具加工過程的計算機輔助設(shè)計中,零件的可成形分析和彈性變形及加工變形,模具表面設(shè)計變形,以及想的剛性和可變形界面相對差都考慮了,通過增加沖壓鑄件的壁厚來執(zhí)行理想剛性

5、模具表面設(shè)計的假設(shè)。</p><p>  2、模具表面設(shè)計的概念</p><p>  金屬片形成模具的表面設(shè)計可以被定義為在確保剛性結(jié)構(gòu)條件下,使金屬片鑄塑成一種理想的沖壓形狀,使之成為完整的表面幾何形狀的一部分。這種設(shè)計過程始于零件的幾何形狀作為基本輸入數(shù)據(jù),提出這種方法的工程師首先通過推翻最有利的軸線和排除了冒險的切口對制圖的說明書作出了決定,因而,利用材料的可成形性和最小允許的厚度,

6、取決于拉伸成形的數(shù)量和估計拉伸操作的次數(shù),設(shè)計者運用金屬片零件半厚度偏移幾何學(xué),在計算機輔助設(shè)計的環(huán)境中,通過延長零件的邊緣,嵌縫鋒利的刃口,伸展法蘭的形狀為沖壓表面設(shè)置了額外的表面。利用材料特性和最大拉伸變形的次數(shù),估計出可完成的最大化圖形進深,并且一系列的連接桿和計數(shù)管的表面可被額外的穿孔和沖模,目的是在形成過程的初始階段最小化變形斜度,在對沖壓操作之后,用一系列平面和可曲展面來產(chǎn)生組合的幾何面,通常在焊頭和焊尾的連接之間用一種控制

7、方式來抑制材料在沖壓時溢出,在沖壓和粘接分界面的形成之后,他們通常由排除分界面數(shù)量的偏置法來發(fā)展相似幾何學(xué),這是用CAD軟件典型的板材大于金屬片幾個百分點的厚度,現(xiàn)階段允許使用的部分變薄,拉伸,并做空白大小可利用估算恒定假設(shè)。</p><p>  一旦工程師創(chuàng)造了整個幾何方法描述的空白,并在計算機輔助環(huán)境下進行模具表面設(shè)計,用有限元分析可完成以調(diào)查過程的可行性成形、 幾何部分回彈后形成剛性模量假設(shè)的理想的有限元模

8、擬及施工。隨著加入的金屬厚度分布,沖壓過程通常是做兩步,一種是進行形成分析,確定某一變形金屬沖壓、裝粘合劑,其次是移動后的彈性變形的計算與成型模具應(yīng)力、變形幾何學(xué)。依靠相對質(zhì)量的過程與材料參數(shù), 幾個虛擬試驗要必須達到最佳成型模具及幾何要素。此時, 成形載荷類型和圖形作用,是根據(jù)現(xiàn)有的沖壓路線規(guī)定的。最后,完成沖壓模具表面的校準(zhǔn),并提交模具建筑業(yè)和制造業(yè)部門。</p><p>  在汽車行業(yè),沖壓模具設(shè)計與施工實

9、踐,采用按類型的板材和借鑒行動,按照所選類型制造沖壓模,通常 一項內(nèi)部模具設(shè)計與施工的選材標(biāo)準(zhǔn)是其次的要件,包括詳細的模具,鑄造、熱處理規(guī)范程序。用發(fā)展模面設(shè)計為沖壓的起始尺度、上下結(jié)合分子,是指導(dǎo)該內(nèi)部標(biāo)準(zhǔn)是受制于標(biāo)注與融合的主要構(gòu)件元素。如上下模適配器板、沖床、鑄造粘結(jié)劑、導(dǎo)柱和引導(dǎo)套管磨損板. 另外,通過選擇運用沖壓刀具,撐架-幾何學(xué)、沖床沖壓成型模具完全確定建造和使用于CAD系統(tǒng),這一階段的設(shè)計工程師,允許建立虛擬原型上、下半片

10、的成形,模具用一些幾何參數(shù),如內(nèi)部閉合高度、內(nèi)存儲金屬板、沖床、粘合劑壁厚或立體邊平衡塊. 一些位置分析沖模,拉深模和固定元素形成一個完整的循環(huán)進行干涉和控制,以消除滑枕行程和制圖數(shù)量的不一致性。</p><p><b>  3、模具面形控制</b></p><p>  模具面形控制的成形過程是一個復(fù)合體系的組成、沖模 空白, 涉及機械、一套互動沖壓,提供必要的基礎(chǔ)結(jié)

11、構(gòu)和能源。假定一個理想的剛性壓模構(gòu)造相連了托板和理想的剛性沖壓支承板,忽略所有模具表面的扭曲來幫助工程師設(shè)計形成過程的方法,成形過程只有按照純圖形表式法,否則,在形成過程中為了模擬板材變形反應(yīng),努力把所有這些系統(tǒng)力學(xué)模型去運算,這將是一個巨大的工程。這是最實際的做法,因此形成孤立接口,即模面設(shè)計和空白。從其余空白變形和模擬下形成壓力產(chǎn)生摩擦接觸,用純幾何描述模具表面設(shè)計. 此外, 這一主張在工業(yè)中已得到普遍使用,即使是在常規(guī)的金屬板內(nèi)部

12、面板下. 最理想的觀念吸取模施工,不過, 當(dāng)談到有可能成為可疑的形成是由于高強度鋼的成形載荷較高. 此外,在產(chǎn)生信任方面形成規(guī)模結(jié)構(gòu)部分與非對稱分布,可能適用于很高負載平衡塊板之間的磨損,在沖壓和粘合劑之間增加磨損和扭曲的標(biāo)簽. 在這些變形模具的生產(chǎn)中,應(yīng)列入計算模型的形成過程. </p><p>  目前, 考慮計算機硬件躍進與有限元軟件,建立一個計算機模型模擬系統(tǒng)是完全可以實現(xiàn)的, 然而由于高角度分析計算機時

13、代, 基于個別特征的變形經(jīng)驗,一個完整沖壓周期,從一個企業(yè)家的觀念來看是幾乎不可行的, 反而比較簡單的實際工程方法是可解耦系統(tǒng)的沖壓過程,加上部分組成空白模面設(shè)計、模具只完成部分拉深模具設(shè)計。與模具表面扭曲相比,審議過程只有部分時間依賴性的相互作用和成型板材空白界面帶來大變化空白. 因此, 由于運動學(xué)特征的變形空白,基于增量應(yīng)變和有限元素變形理論,模擬部分的過程應(yīng)制定基于有限元大變形理論。在另一方面,在單一元素成形周期間,有小變形疊加過

14、渡到大位移變形沖模的特點. 因此,小應(yīng)變的彈塑性有限元分析得出的模具可能適合建作。</p><p>  兩方的相互作用是指在計算適當(dāng)?shù)臄?shù)據(jù)傳輸路線。在該部分過程中,成型模具資料模擬用幾何面設(shè)計為剛性表面實體和空白作為彈塑變形體、時效位移驅(qū)動粘合劑、沖壓成型工藝實現(xiàn)議案. 主要產(chǎn)生幾何變形的應(yīng)力分布和生產(chǎn)空白的歷史后,回彈和成形載荷以及摩擦接觸應(yīng)力分布較大分子面前. 另一方面,為模具專用部分,負載歷史形成的基本投入

15、評估模具表面變形分析部分. 完全沖模設(shè)計模面材料點的有限元分析得出沖壓周期的位移、只有對下一迭代更新模具表面設(shè)計可反饋過程的一部分。同時計算彈塑性應(yīng)力應(yīng)變在一個完整的歷史循環(huán)和沖壓同期之間的接觸力沖壓、粘合劑。通過相互借鑒模建筑元素,分子與平衡塊板磨損帶來了很大的啟示。</p><p><b>  4、工業(yè)應(yīng)用</b></p><p>  上一節(jié),在刀具生產(chǎn)前,對于前

16、道邊體前沖壓模具設(shè)計,工程概述方法論是利用結(jié)構(gòu)評估沖壓模具設(shè)計,如(Fig. 2)。這部分是強度沖壓能源管理結(jié)構(gòu)的特性。 這種傳統(tǒng)的設(shè)計方式是為大型構(gòu)件利用吸取1.7–2.2 mm厚度的優(yōu)質(zhì)鋼材。隨著減重約10-15%, 商業(yè)可供1.5毫米高強度低合金鋼與屈服應(yīng)力、成形、中度變形,推出一個可行的能增大強度特性的替代品。</p><p>  成形工藝設(shè)計部分沖壓形成純幾何造型做以下辦法,所有模具表面變形假定,忽略了

17、剛性沖壓模具。利用三維CAD模型的一部分, 首先進行的是一種損人利己檢查,以確定是否可能形成一個單一的部分操作。隨后對零件頂錐角尖端的調(diào)查表明, 三維旋轉(zhuǎn)的部分是幾何撞擊運動方向,因此,零件被適當(dāng)?shù)姆胖迷诘葔合到y(tǒng)中,這種系統(tǒng)使坐標(biāo)系統(tǒng)中的緊迫軸成平行于部分繪制軸線,如:(Fig. 3).。利用三維CAD模型的一部分,表面上一套模具的幾何學(xué)產(chǎn)生了相當(dāng)于抵消了一半的板材厚度,區(qū)編一套加上這套表面幾何。自零件的邊界線沿著曲線形成,是延長表面以

18、下類似的幾何形式和粘合劑,因此沖去粘合劑表面和法蘭產(chǎn)生完整的模具及粘合劑表面上的沖壓模具。 如:(Fig. 4)。這一三維組合形式表面形成界面幾何學(xué),其他模具分子從中得到。在CAD環(huán)境中,通過一個簡單的幾何復(fù)制,沖壓和粘合劑界面被產(chǎn)生了。通過使用其對應(yīng)的幾何厚度沖抵正常的壓力和方向。現(xiàn)階段,完整的描述模具計算機輔助面設(shè)計,能夠獲得雇用的有限元網(wǎng)格,成形回彈的評估和分析。沖壓,網(wǎng)狀粘合劑、模具表面與21908三、四個節(jié)點殼單元共有,所有曲

19、率是由六層分子描繪,如:(Fig. 5)。</p><p><b>  5、總結(jié)</b></p><p>  本文,一個工程的定量評價方法,在設(shè)計過程中形成的板材沖壓件,提出了精確的理想假說通常采用剛性模具。 以下簡要回顧沖壓模具設(shè)計實踐,基于計算機輔助設(shè)計與分析概念的計算方法,并在第一部分和第二部分中,這項研究提出了測定與控制模面變形期間的形成過程。工業(yè)應(yīng)用的基本步

20、驟是用來展示、 雙方更進一步的分析計算和模具表面變形的過程,是一個完整的沖壓模具設(shè)計成形??沙尚涡院突貜椬冃芜^程進行分析,一個汽車沖壓結(jié)構(gòu)由部分高強度鋼組成的。通過增強沖壓件的硬度,在最后的沖壓成形模具表面變形結(jié)果中,沖壓形成決定的理想剛性和被論述的可變形的分界面之間有著不同的幾何學(xué)。最高沖壓表面變形發(fā)現(xiàn)有不到一半的厚度了,確認(rèn)的空白界面形成了剛性假說。</p><p><b>  附錄1 英文原文&l

21、t;/b></p><p>  Stamping die-face design</p><p>  1. Introduction</p><p>  It is known that a crucial part of the production of asheet metal stamping die is essentially the develo

22、pment of a die-face design aiming a tooling surface geometry that gives a fully developed blank shape a defect-free stamping form within the necessary quality constraints. The design of stamping tooling elements starts w

23、ith the part geometry as the basic input data and the methods engineers try todetermine the minimum number of operations for a given stamping form in order to reduce the formin</p><p>  The methods engineer

24、conduct svarious tryouts for the forming process design continuing up to the end of workshop try-outs until to the mass production phase of the stamping part. Since both the stamping die-face design and the plasticworkab

25、ility of the sheet metal determine the characteristics of blank defor-mations, additional care should be paid in the forming of high strength steels to adapt to the lower formability and higher springback deformations [2

26、]. In line with the advance-ments in th</p><p>  Hence, the die-face deformations and its implications should be considered in connection with the draw die design before submitting to the production. In this

27、 paper, following a short review of the stamping die design practice; a computational methodology is presented for the assessment and control of die-face defor-mations during the sheet metal forming processes. The propos

28、ed approach is employed in the forming process design for a cab body member based on the computer aided design and analysi</p><p>  2. Die-face design concepts</p><p>  The die-face design for a

29、 sheet metal forming die may be defined as the composition of a complete surface geometry that deforms a sheet metal blank plastically into a desired stamping shape by ensuring a rigid tooling construction. The design pr

30、ocess starts with the part geometry as the basic input data, the methods engineer firstly decides on the drawing direction by tipping the part to the most favorable axis, and eliminating the risk of an undercut. Then, us

31、ing the material formability and mi</p><p>  Once the methods engineer has created a entire geometric description of the blank and die faces in a CAD environment, the finite element analyses may be performed

32、 in order to investigate the process feasibility in terms of the formability, part geometry after springback and forming loads by assuming an ideally rigid die construction [6,7]. The finite element simulation of the sta

33、mping process is done usually in two steps. A forming analysis is conducted to determine the metal deformation for a g</p><p>  3. The die-face shape control</p><p>  The sheet metal forming pro

34、cess is a compound system made up of the stamping die and the blank, and involves a set of mechanical interactions with the press and the foundation structure that provide the necessary forming energy[4,5,10,11]. Assumin

35、g an ideally rigid die construction connected to the ram and bolster plates of an ideally rigid press and neglecting all die-face distortions help the methods engineer designing the forming process following a pure geome

36、tric modeling procedure only [2–5</p><p>  ing a computer model in order to simulate the complete process system is achievable considering the advancements in computer hardware and finite element software, n

37、oneth-</p><p>  eless it is hardly feasible from an industrial perspective due to the high computer analysis times. Instead a rather simple but a practical engineering approach may be the decoupling the stam

38、ping system in to the process-only part composed of the blank plus the die-face design and tooling-only part containing complete draw-die design, based on the individual characteristics of the deformations experienced du

39、ring a complete pressingcycle, respecti-</p><p>  vely. Considering process-only part, there are time-dependent interactions of the sheet met-</p><p>  al blank and the forming interface bringin

40、g about large changes in the blank shape when compared with the scale of die-face distortions. Consequently, the process-only part should be simulated using a finite element formulation based on large-strain and finite i

41、ncremental deformation theory due to the kinematic characteristics of the blank deformations [8]. On the other hand,small deformation transientssuperimposed on to the large displacements histories characterize the deform

42、ations of the draw</p><p>  lacement-driven binder and punch motion realize the forming process. The major outputs are deformed geometry and production stress distributions of the blank after springback and

43、the forming load histories as well as the frictional contact stress distributions over the die-face elements. On the other side, for the tooling-only part, the forming load histories are the basic input for the assessmen

44、t of the die-face deformation analysis. The finite ele-</p><p>  ment analysis of the complete draw-die design for a given press cycle provides the displace</p><p>  -ments of dieface material p

45、oints, and the updated die-face design may be fed back to process-only part for the next iteration. Also the computed elastic–plastic stressstrain histo-</p><p>  ries during a complete press cycle and the c

46、ontact forces between the punch and binder elements through the wear plates and balancer blocks bring about a significant insight to the interaction of draw-die construction elements.</p><p>  4. Industrial

47、application</p><p>  The engineering methodology outlined in the previous section is employed in the structural assessment for the stamping die design of a front-side cab body member before the tooling produ

48、ction (Fig. 2). The strength of this part is an essential feature in the crash-energy management of a cab frame. The conventional design practice for this type of large-scale structural elements is to use draw-quality st

49、eels of thickness 1.7–2.2 mm. The commercial availability of 1.5 mm HSLA steel with a higher y</p><p>  ies along with an approximately 10–15% weight reduction.</p><p>  The forming process desi

50、gn of the part stamping form is done following a pure geometric modeling approach, and all die-face deformations are neglected assuming a rigid stamping tooling. Using the 3-D CAD model of the part, firstly an undercut c

51、heck is conducted in order to determine the possibility of forming the part in a single operat-</p><p>  ion.Subsequent to the investigation of the tip angles for the part, the 3-D part geometry is rotated t

52、o the configuration of the ram motion direction, so that the part is positioned appropriately in the press coordinate system in which the pressing-axis became parallel to the part-drawing axis(Fig. 3). Using the 3-D CAD

53、model of the part, a set of surfaces</p><p>  for the upper die geometry is generated with an offset equal to the half of the sheet metal thickness, and a set of addendum areas are added to this set of surfa

54、ce geometries.Since the part sidelines follow a curved form, the extended surface geometry follows approximately a similar form, and therefore a sweep binder surfaces and addendum flange are generated to complete the die

55、 and upper bindersurfaces of the stamping tooling (Fig. 4). This 3-D composite surface forms the forming interface geom</p><p>  The formability assessment and springback deformation analyses are conducted u

56、sing the concepts and methodologies described in Part I and in Part II of this study. In the first finite element simulation run, the forming loads are defined using the predefined displacement–time history functions for

57、 the forming interface elements. During the forming process, the punch is kept fixed in its initial position,and both the binder and the die are loaded in displacement control, in which a constant clear</p><p&

58、gt;  A set of simulation runs with a force-controlled binder closure using a constant blankholder loads are performed in which the blankholder force is increased from 100 to 300 ton with 50 ton increments (Fig. 7). The f

59、easibility of the sheet metal forming process conditions corresponding to each blankholder force value are evaluated using both the amount of thinning and the shape distortion after the springback deformations. In order

60、to assess the shape distortion between the forming geometry and t</p><p>  geometry after the springback, the following parameter is introduced as a global measure of the springback deformation.</p>&

61、lt;p>  In the above expression, x and X denote the position vector components of a node on the blank before and after springback, respectively, and N is the number of nodes on the blank mesh. An examination of the plo

62、ts of the shape distortion parameter and the maximum thinning with the increasing blankholder force, indicate that a blankholder force about 215 ton would be the limit considering the allowable thinning limit of 18% with

63、 the material (Fig. 8). For higher blankholder force values, even thou</p><p>  brane plastic straining. For instance, in the case of 100-ton holding force, the amount of maximum thinning over the stamping f

64、orm is reduced to 14.7% with a similar plastic strain distribution compared to 200-ton blankholder force case (Fig. 9). However, there is a remarkable increase in the springback deformations when compared with that predi

65、cted under a 200-ton blankholder force, and consequently the shape distortion parameter is almost tripled between these two blankholder loading cases. Fi</p><p>  mations indicated that a blankholder force o

66、f 200 ton sets the maximum allowable forming load considering the process and material related constraints that can be used in the computer aided design of the sheet metal forming die. </p><p>  5. Conclusio

67、ns</p><p>  In this paper, an engineering methodology is proposed for the quantitative assessment for the accuracy of the ideally rigid die hypothesis typically employed in the forming process design of shee

68、t metal stamping parts. Following a short review of the stamping die design practice, the computational approach based on the computer aided design and analysis concepts given in Part I and Part II of this study is prese

69、nted for the determination and control of die-face deformations during the forming pr</p><p>  References</p><p>  [1] High strength steel stamping design manual. Southfield-Michigan: American I

70、ron and Steel Institute A/SP Program; 2000.</p><p>  [2] Sheet metal formability report. Southfield-Michigan: American Iron and Steel Institute; 1989.</p><p>  [3] Automotive sheet design manual

71、. Southfield-Michigan: American Iron and Steel Institute; 2002.</p><p>  [4] Schuler GmbH. Metal forming handbook. Berlin: Springer; 1998.</p><p>  [5] Fundamental of tool design. New York: Soci

72、ety of Manufacturing Engineers; 1998.</p><p>  [6] Firat M. Sheet metal springback prediction including initial plastic anisotropy. In: Proceeding of third international conference on design and production o

73、f dies and molds. Bursa: Dies and Molds –Metu; 2004, p. 248–54.</p><p>  [7] Firat M, Kocabicak U. Sheet metal springback including the bauschinger effect. In: Proceeding of third international conference on

74、 design and production of dies and molds. Bursa: Dies and Molds –</p><p>  Metu; 2004, p. 255–64.</p><p>  [8] Firat M. U-channel forming analysis with an emphasis on springback deformation. Mat

75、er Design, 2005, in press, doi:10.1016/j.matdes. 2005.05.008.</p><p>  [9] Suchy I. Handbook of die design. New York: McGraw Hill; 1997.</p><p>  [10] Die design handbook. New York: Society of M

76、anufacturing Engineers; 1990.</p><p>  [11] Lange K. Handbook of metal forming. Michigan: Society of Manufacturing Engineers; 1985.</p><p>  [12] Hallquist J. LS-DYNA theory manual. Livermore (C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論