版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p><b> 翻譯部分</b></p><p><b> 英文原文</b></p><p> Development of a Decision Support System for Groundwater Pollution Control at Coal-mining Contaminated Sites</p>
2、;<p> Xiaodong Zhang Faculty of Engineering University of Regina</p><p> Christine W. Chan Faculty of Engineering/Energy Informatics Laboratory University of Regina</p><p> Gor
3、don Huang Faculty of Engineering University of Regina</p><p><b> Abstract:</b></p><p> Groundwater contamination is one of the major environment concerns at coal-mining sites.
4、Highly saline or highly acidic water from coal-mining can introduce serious pollution to groundwater and adversely affect its quality. </p><p> This impact may last a long time even after the mining activ
5、ity has ceased. Identification of an appropriate remediation technique is critical for effective pollution control. However, due to complexity of considerations involved in the pollution, it is difficult for environmenta
6、l managers to select optimal techniques. This paper presents a robust decision support system named GCDSS that integrates the functional components of mine characterization, numerical modeling, risk assessment and remedi
7、</p><p><b> Keywords:</b></p><p> Decision support system; acid mine drainage (AMD); groundwater; coal mine</p><p> 1 Introduction </p><p> Groundwater
8、contamination is one of the major environmental concerns at coal mining sites. Acid mine drainage (AMD) is the primary problem associated with pollution from coal mining. AMD is often highly acidic water rich in heavy me
9、tals, which can introduce serious pollution to groundwater and adversely affect its quality. A variety of AMD treatment technologies and groundwater remediation methods were developed. Due to the complexities of these te
10、chnologies, it is often difficult for environmen</p><p> 2 Background: AMD and its treatment </p><p> AMD from coal mining is a difficult and costly problem. It can seriously affect groundwate
11、r quality and cause metals to leach from mine wastes. AMD results from the oxidation of metal sulfides, particularly pyrite (FeS2). Under the acidic conditions, oxidation of pyrite occurs in the following reaction [1]:
12、</p><p> This reaction demonstrates the polluting capability of the oxidation of pyrite that every mole of pyrite can be converted to 16 moles of hydrogen and 2 moles of sulfate. Much acid is generated thro
13、ugh this reaction.</p><p> There are two methods for treating AMD: active treatment and passive treatment. Active treatment involves neutralizing acid-polluted water with alkaline chemicals which include li
14、mestone, hydrated lime, caustic soda, soda ash, and ammonia [2]. Active treatment is expensive and requires much time and manpower to maintain. Passive treatment employs naturally occurring chemical and biological reacti
15、ons and requires little or no maintenance. Passive methods include anoxic drains, limestone rock chan</p><p> 3 Development of Decision Support System </p><p> 3.1 Knowledge Acquisition</p&
16、gt;<p> Knowledge acquisition is a bottleneck in DSS development and involves the processes of knowledge elicitation, analysis and representation. It is crucial because output of the system is only as good as the
17、 input. The main sources of knowledge in this study are the domain experts, the statistical data about coal mining, and documents.</p><p> 3.2 GCDSS </p><p> GCDSS consists of the modules for
18、mine characterization, numerical modeling, risk assessment, and remediation technique selection. It also consists of a graphical user interface which allows the user to input and query the site related data, and shows th
19、e recommendations and suggestions for the user. Details on the numerical modeling, risk assessment, and remediation technique selection modules are discussed as follows. The architecture of GCDSS is shown in Figure 1.&
20、lt;/p><p> Fig.1 Architecture of GCDSS</p><p> 3.2.1 Mine Characterization Module </p><p> Mine characterization is crucial for the following numerical modeling, risk assessment, an
21、d the selection of remediation technologies in GCDSS. This module has the function of providing the necessary data and standards input for the other three modules. A number of factors on mine characterization are discuss
22、ed in this module, for example:</p><p> (1) Types of mining </p><p> There are two types of coal mines: surface and underground. Surface mining includes open pit mining, highwall or strip mini
23、ng, which recovers coal at or close to the earth’s surface. Underground mining extracts coal from under the surface.</p><p> (2) Mining wastes </p><p> The major wastes from coal mining activi
24、ties are mining water and waste rock, which are serious long-term sources of groundwater deterioration. Mining water, commonly referred to AMD, is highly acid water rich in heavy metals. Mining water can directly pollute
25、 groundwater when mining is below the water table, or indirectly through seepage. Waste rock is often disposed in large dumps. When water (such as rainwater, surface water or mining water) infiltrates through waste dumps
26、 into subsurface wat</p><p> 3.2.2 Numerical Modeling Module </p><p> Numerical modeling of groundwater flow and transport requires a number of data inputs on soil hydraulic properties, time i
27、ntegration parameters, initial and boundary conditions, porous media dispersivities, species solubility, and other many parameters. This module implements the general multicomponent transport equation which can be expres
28、sed as follows [4]. </p><p> where and are the fractions of the soil filled with mobile and immobile water respectively; and are the concentrations of contaminant w in the mobile and immobile water
29、respectively; is the Darcy velocity ; and are adsorbed phase concentrations of contaminant w in the mobile and immobile phase respectively ; f is the fraction of sorption sites which is in direct contact with mobile
30、 liquid; is soil bulk density; is the volumetric flow rate of fluid injection (or withdrawal) per unit v</p><p> 3.2.3 Risk Assessment Module </p><p> Environmental risk is the probability of
31、 injury, disease or death under carcinogen and noncarcinogen circumstances [5]. Assessment of the risk of pollution of groundwater includes: simulation for the fate and transport of contaminants in groundwater, assessmen
32、t of leaching from waste products or polluted soil, analysis of toxicological effects on health and environment, and exposure assessment. Two methods for risk assessment were recommended by USEPA (1992) [6]: excess lifet
33、ime cancer risk (ELC</p><p> Excess Lifetime Cancer Risk (ELCR)</p><p> ELCR is estimated as the incremental probability of an individual developing cancer over a lifetime as a result of expos
34、ure to the potential carcinogen. It may be expressed as follows: </p><p> ELCR = CDI × SF (3)</p><p> where CDI is chronic daily intake (mg/kgday), SF
35、is the slope factor which is a maximum estimate of the probability of an individual developing cancer over a lifetime of exposure to a particular level of a potential carcinogen. In this study, CDI may be obtained from t
36、he equation (4), based on the concentration of contaminant w in groundwater [7]. </p><p> CDI = CW × IR × EF × ED/ (AT × BW) (4)</p><p> where CW is the
37、 concentration of contaminant w in groundwater (mg/L), IR is human ingestion rate (L/day), EF is exposure frequency (days/year), ED is average exposure duration (year), AT is average time (AT = 365 × days/year ×
38、; ED), and BW is body weight (kg). In this study the values for these parameters for an adult may be: IR= 2 L/day, EF = 350 days/year, ED = 70 years (lifetime), AT =365 × days/year × 70 years, BW = 70 kg..</
39、p><p> (2) Hazard Quotient (HQ)</p><p> HQ is used to describe the potential for noncarcinogenic toxicity, and may be expressed as follows: </p><p> HQ= CDI / RfD
40、 (5)</p><p> where RfD is reference dose (mg / kg·day). The greater the value of HQ, the greater the level of concern. For example, the value 0.05 of HQ indicates that the probability of gett
41、ing a health injury is 5%. However, the level of concern does not increase linearly as the RfD is approached or exceeded because RfD does not have the same accuracy or precision as the level of concern and is not based o
42、n the same severity of toxic effects [7].</p><p> 3.2.4 Remediation-Technique Selection Module</p><p> A number of technologies are available to remediate groundwater contaminated by coal-mini
43、ng activities. Groundwater remediation methods can be classified into two classes: in situ and ex situ methods. In situ methods treat polluted groundwater in place, while ex situ methods excavate contaminants and transpo
44、rt them off-site for treatment. The methods for treating AMD may be active and passive. Since it is difficult for the user to select a suitable remediation technique for the specific sites, t</p><p> 4 Conc
45、lusions </p><p> In this study, an integrated decision support system (GCDSS) is proposed for groundwater pollution control at coal-mining contaminated sites. Through the developed GCDSS, the functions of m
46、ine characterization, numerical modeling, risk assessment and remediation-technique selection are effectively integrated. The user can access various resources within this system and obtain support on selection of differ
47、ent remediation technologies.</p><p> Acknowledgements</p><p> The generous support of a Research Grant from the Natural Sciences and Engineering Research Council of Canada is gratefully ackno
48、wledged.</p><p><b> 中文譯文</b></p><p> 在煤層開采地點控制地下水污染的決策支持系統(tǒng)的發(fā)展</p><p> 張曉東 里賈納大學工學部</p><p> 克里斯蒂娜 里賈納大學工學部/能源信息實驗室</p><p> 黃戈登 里賈納大學工學
49、部</p><p><b> 摘 要:</b></p><p> 在采煤點產(chǎn)生的地下水污染是一個重大環(huán)境問題。來自采煤點的高鹽或高酸性水會嚴重污染地下水,并嚴重影響水的質(zhì)量。</p><p> 這種影響在采礦活動已經(jīng)停止后可能會持續(xù)很長一段時間。有效控制污染的關(guān)鍵是確定適當?shù)难a救技術(shù)。然而,由于污染中有復雜的因素參與,這是便增加了環(huán)境管
50、理人員選擇最佳的技術(shù)的困難。本文提出了一種強有力的合礦山特性,數(shù)值模擬,風險評估和修復技術(shù)的選擇為一體的名為GCDSS的決策支持系統(tǒng)。從一個案例研究表明該系統(tǒng)可以幫助提高在煤礦開采污染點控制地下水污染的效率。</p><p> 關(guān)鍵詞:煤礦;地下水; 礦山酸性廢水; 決策支持系統(tǒng) </p><p><b> 1介紹</b></p><p&g
51、t; 在采煤點地下水污染是主要相關(guān)環(huán)境問題之一。礦山酸性廢水( AMD )是來自煤炭開采產(chǎn)生的初始問題。 AMD往往是含有重金屬非常豐富的酸性水,它可以產(chǎn)生嚴重的地下水污染和嚴重影響水質(zhì)量。 大量關(guān)于AMD的各種治療技術(shù)和地下水修復的方法得到發(fā)展。由于這些技術(shù)的復雜性,環(huán)境管理人員在特定污染點往往很難為做出最佳方案的選擇。決策支持系統(tǒng)(決策支持系統(tǒng))可以幫助解決這一問題。關(guān)于煤炭開采的管理和地下水整治行動許多決策支持系統(tǒng)被提出了。然而
52、,由于沒有一個在決策支持系統(tǒng)中結(jié)合煤礦的職能特性,數(shù)值模擬,風險評估和修復技術(shù)選擇有足夠的研究。本研究的目的是為了填補這以前的研究中缺少的空白和并發(fā)展成在煤礦開采污染點控制地下水污染的支持所有上述這些職能一個綜合決策支持系統(tǒng)( GCDSS )。</p><p> 2背景:AMD及其治療</p><p> 治理來自煤礦開采的礦山酸性廢水(AMD)是一個困難和代價高昂的問題。AMD會嚴重影
53、響地下水水質(zhì),并導致金屬溶解在廢水中。 AMD產(chǎn)生的結(jié)果是氧化金屬硫化物,尤其是黃鐵礦( FeS2 ) 。在酸性條件下,氧化黃鐵礦發(fā)生在下面的反應[ 1 ] :</p><p> 這種反應表明,污染能力的黃鐵礦氧化,每摩爾黃鐵礦可轉(zhuǎn)換為16鼴鼠的氫和2痣的硫酸。多酸是通過這種反應產(chǎn)生的。</p><p> 有兩種方法治療AMD的方案:積極治療和被動治療。積極治療涉及消除酸污染的水堿性化
54、學品,其中包括石灰石,熟石灰,燒堿,純堿,和氨[ 2 ] 。積極治療非常昂貴,而且需要大量的時間和人力來保持。被動治療是采用自然產(chǎn)生的化學和生物反應和需要很少或根本不要花費來維持。被動方法包括缺氧水渠,石灰?guī)r渠道,堿性補給地下水,排水和轉(zhuǎn)移,通過人為的濕地或其他解決結(jié)構(gòu)。</p><p><b> 3開發(fā)決策支持系統(tǒng)</b></p><p><b> 3
55、.1知識獲取</b></p><p> 知識的獲取在DSS發(fā)展的過程中是一個瓶頸,,涉及的知識獲取,分析和代表性。這是至關(guān)重要的,因為該系統(tǒng)的輸出要和投入一樣好。主要的知識來源,是本研究領(lǐng)域的專家,有關(guān)煤炭開采的統(tǒng)計數(shù)據(jù)和文檔。</p><p><b> 3.2 GCDSS</b></p><p> 圖1 GCDSS結(jié)構(gòu)<
56、;/p><p> GCDSS包括煤礦特性,數(shù)值模擬,風險評估和修復技術(shù)的選擇模塊。它還包括一個圖形用戶界面允許用戶輸入和查詢網(wǎng)站相關(guān)的數(shù)據(jù),并顯示了用戶的建議和意見。數(shù)值模擬,風險評估和修復技術(shù)選擇模塊詳細的討論如下。該架構(gòu)的GCDSS是如圖1所示。</p><p> 3.2.1礦山表征模塊</p><p> 礦山表征在GCDSS中的數(shù)值模擬,風險評估,并選擇修復
57、技術(shù)是至關(guān)重要的。此模塊的功能,提供必要的數(shù)據(jù)和在其他三個模塊投入的標準。在此模塊有若干相關(guān)礦井特征的因素被討論,例如:</p><p> ?。?1 )采礦的類型</p><p> 煤礦的類型有兩種:地表和地下。地表包括露天采礦,邊坡或條帶開采,開采在地表或接近地表的煤。地下開采是開采地下的煤。</p><p><b> ?。?2 )采礦廢物</b
58、></p><p> 從煤炭開采活動中出來主要的廢物是廢水和廢石,這是長期嚴重惡化地下水的源頭。開采出來的水,通常涉及AMD,是含有重金屬非常豐富的酸性水。當開采低于地下水位時,開采水可以直接污染地下水,或間接滲流通過。矸石往往是被放置在大型垃圾場。當水(如雨水,地表水或采礦水)浸潤通過廢棄物到地下的水時,地下水水質(zhì)也會受到極大地影響[ 3 ] 。</p><p> 3.2.2數(shù)
59、值模擬模塊</p><p> 地下水流和運輸數(shù)值模塊要求進行一系列關(guān)于土壤水力特性的數(shù)據(jù)輸入,這些數(shù)據(jù)是時間積分參數(shù),初始和邊界條件,多孔介質(zhì),物種的溶解度,以及其他許多參數(shù)。該模塊實現(xiàn)了一般多運輸方程可表示如下[ 4 ] 。</p><p> 和 是分別充滿了移動和固定水的土壤成分;和 分別是在移動和固定水中污染物濃度單位; 是達西速度; 和 分別是吸附在移動和固定相的污染物的濃度單
60、位;F是移動液體直接接觸的部分吸附點;是土壤容重;是單位體積的多孔介質(zhì)體積流速注射液(或撤銷)的速率;i是注射液污染物的濃度;和是水動力彌散張量。</p><p><b> 2.3風險評估模塊</b></p><p> 環(huán)境風險是傷害,疾病或死亡下致癌物和無致癌物情況的概率[ 5 ] 。地下水污染風險評估的內(nèi)容包括:下水中的污染物的刺激和運輸結(jié)果,評估浸出產(chǎn)品或廢
61、物污染土壤,分析毒理效應對健康和環(huán)境,和接觸評估。美國環(huán)保局( 1992 )所建議的兩種進行風險評估的方法[ 6 ] :導致癌癥污染物的超額終身癌癥風險( ELCR )和導致無致癌物污染物危險商數(shù)(HQ)。</p><p> ?。?1 )超額終身癌癥風險( ELCR )</p><p> ELCR被作為由于暴露在潛在的致癌物質(zhì)下一生概率。它可以表述如下:</p><p
62、> ELCR = CDI × SF (3)</p><p> 如果CDI是慢性每日允許攝入量(毫克/ kgday ) ,SF是斜坡因素是最大的發(fā)展成癌癥個體的一生接觸到特定水平的一個潛在的致癌物質(zhì)。在這項研究中,CDI可從方程( 4 )的基礎(chǔ)上,集中在地下水的污染 [ 7 ] 。</p><p> CDI
63、 = CW × IR × EF × ED/ (AT × BW) (4)</p><p> 如果CW是地下水(毫克/升)污染物的濃度 ,EF是人類攝食率(升/天) ,IR是曝光頻率(天/年) , ED是平均接觸時間(一年) ,AFJ是平均時間(AT= 365 ×天/年× ED) ,以及BW是體重(公斤) 。在這項研究中,對
64、這些參數(shù)成人的價值觀念可能是:IR= 2升/日,EF= 350天/年,ED= 70年(終身) ,AT= 365 ×天/年× 70歲,BW= 70公斤。</p><p> ?。?2 )危害商數(shù)(HQ)</p><p> HQ是用來說明無無致癌物毒性潛力,并可能會表示如下:</p><p> HQ = CDI / RfD
65、 (5)</p><p> RfD是指參考劑量(毫克/千克?天) 。HQ有更大的價值,,就會有更大程度的相關(guān)性。例如,價值0.05的HQ表明,獲得健康傷害概率是5 % 。但是,相關(guān)性的程度不增加線性作為參考劑量是接近或超過參考劑量并不因為有相同的準確性或精確的程度的關(guān)注,而不是基于同樣嚴重的毒性作用[ 7 ] 。</p><p> 3.2.4修復技術(shù)
66、選擇模塊</p><p> 一些技術(shù)是可以補救在煤炭開采活動中引起地下水污染的。地下水修復方法可分為兩類:在原地保護和易地方法。原地方法是在污染地下水的地方治理,而易地方法挖掘和運輸這些污染物場外接受治理。治理礦山酸性廢水的方法可分為主動和被動。用戶很難在具體地點選擇合適的補救技術(shù),而決策支持系統(tǒng)可幫助用戶做出選擇。用戶可以輸入所需的數(shù)據(jù),如污染點的特點和通過友好的用戶界面的數(shù)值模擬參數(shù)。GCDSS可以評估各種
67、組合的補救技術(shù)和礦山酸性廢水的治理方法,并在某一特定采煤地點控制地下水污染確定最佳的策略,。</p><p><b> 4結(jié)論</b></p><p> 在本研究中,綜合決策支持系統(tǒng)( GCDSS )在煤礦開采污染的地點控制地下水污染提出建議。通過發(fā)展GCDSS ,使煤礦的職能特性,數(shù)值模擬,風險評估和修復技術(shù)的選擇得到有效整合。用戶在這個系統(tǒng)中可以訪問各種資源,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 地下水污染途徑
- 我國地下水污染現(xiàn)狀與地下水污染防治法的完善.pdf
- 地下水污染與防治
- 對限制開采地下水資源的思考
- 非法開采地下水的入罪探討.pdf
- 地下水污染修復的多目標決策研究.pdf
- 淺談治理地下水污染的途徑
- 可持續(xù)發(fā)展和地下水資源的開采外文翻譯
- 可持續(xù)發(fā)展和地下水資源的開采【外文翻譯】
- 47981.基于gis的水污染控制決策支持系統(tǒng)研究
- 加油站地下水污染防治
- 全國地下水污染防治規(guī)劃
- 地下水污染修復技術(shù)的綜合評價研究
- 我國地下水污染防治的法律規(guī)制.pdf
- 神南礦區(qū)煤層開采對地下水的影響.pdf
- 煤炭地下氣化對地下水污染的研究.pdf
- 水污染事件決策支持系統(tǒng)的設計與實現(xiàn).pdf
- 我國地下水污染及環(huán)境監(jiān)管現(xiàn)狀
- 基于GIS的渭河流域水污染控制決策支持系統(tǒng).pdf
- 銀川地區(qū)地下水污染模擬研究.pdf
評論
0/150
提交評論