版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p><b> 外文翻譯</b></p><p> THEORETICAL INVESTIGATION OF FLUID DISTRIBUTOR IN</p><p> THE INLET/ OUTLET REGION OF SHELL-SIDE OF SHELL-AND-TUBE HEAT EXCHANGER WITHLONGITUDINAL FL
2、OW</p><p> ZEN G Wen-Liang1,2, HU Xian-ping1, DEN G Xian-h1</p><p> (1. The Key Lab. of Enhanced Heat Transfer & Energy Conservation of the Ministry of Education , South China University o
3、f Technology , Guangzhou 510640 ,China ; 2. The Chemistry and Materials Department ,Hengyang Normal University , Hengyang 421001 ,China)</p><p> Abstract:Presents the theoretical investigation of fluid di
4、stributor in the region of inlet/ outlet of shell-side of shell-and-tube heat exchanger with longitudinal flow in this paper . It is advanced the structural optimal mathematical model among the various structural paramet
5、ers of shell-side of heat exchanger. The model provides reference and direction not only for experimental and numerical investigation of this problem, but also for the other process with fluid distribution.</p>&l
6、t;p> Key words: shell-and-tube heat exchanger; longitudinal flow ; fluid distribution ; structural optimization ; theoretical model</p><p> CLC Number : TQ051. 5 Document Code :A</p><p>
7、; 0 Introduction</p><p> Because of such advantages as lower pressure drop of shell-side , larger logarithmic mean temperature difference (LMTD) , eliminating vibration of heat-transfer tubes , and better
8、 overall heat transfer performance , shell-and-tube heat exchangers with axial flow have become more popular in various are as of industrial process comparing with shell-and-tube heat exchangers with segment baffles. Wit
9、h the scale of industrial production devices become lager and larger , heat exchanger as a type of un</p><p> 1 Physical Model</p><p> The overall shell-side structural drawing and the positi
10、on of fluid flow distributor of shell-and-tube heat exchanger with axial flow are shown as Fig. 1 (a) . Fig. 1 (b) is the sketch map of shell-side flow distributor structure. In fact , it is easily to understand the flui
11、d distributor structure as that is a specified punched ratio board punched many mini-ostioles on it from the Fig. 1 (b) . The purpose of theoretical investigation is to found a mathematical model which brings out the opt
12、imal</p><p> Fig. 1 Schematic drawing of shell side configuration of shell and tube</p><p> heat exchangers with axial flow</p><p> In order to express t he researched physical
13、model more concisely, it is be treated as a rectangle heat</p><p> exchanger with axial flow when we take into account the partial unit and its inlet and outlet only. The</p><p> heat exchange
14、r is made up of 36 tubes specification of φ25 mm ×2. 5 mm ×1 000 mm. The exterior dimension of heat exchanger is a cube wit h t he dimension of 360 mm ×120 mm ×1 000 mm. The elevation of heat exchange
15、r is shown in Fig. 2 (a) . Arrangement styles and parameter of tubes is shown in Fig. 2(b) . </p><p> 2 Mathematical Model</p><p> In order to found the mathematical model in theoretical meth
16、od, a theoretical analysis model must be built firstly as Fig. 3. The following assumptions and illumination are necessary for modeling fluid flowing through the inlet region and distributor. </p><p> (1)
17、 Many mini-ostioles be punched in the fluid dist ributed baffle, and diameter of mini-ostioles is infinitesimal .</p><p> (2) Punched ratio of distributed baffle is a continuous function with x coordinate.&
18、lt;/p><p> (3) Fluid flow in the x direction as shown in Fig. 3.</p><p> (4) Fluid flow velocity through distributed baffle is uniform.</p><p> Based above assumptions and next anal
19、ysis , it is easy to deduce the velocity distribution of x direction and pressure drop of x direction , z direction ,and x-z direction respectively.</p><p> 2. 1 Velocity dist ribution of x coordinate</
20、p><p> Mass balance Equation of t he infinitesimal is shown in Fig. 4 , and the differential Equation of x </p><p> Fig. 4 Schematic Drawing of analyzed area</p><p> direction velo
21、city is obtained as Equa. (1) :</p><p><b> (1)</b></p><p> Where A x and A z denote the area of x coordinate and z coordinate , respectively.</p><p><b> And;<
22、;/b></p><p><b> (2)</b></p><p> The boundary condition is: x = X wit h u( x) = 0 ,so t he integral of Equa. (2) can be expressed as follows :</p><p><b> (3)&
23、lt;/b></p><p><b> (4)</b></p><p> 2. 2 Pressure drop of x coordinate</p><p> The energy balance Equation of t he infinitesimal area is shown in Fig. 4. It s diffe
24、rential Equation of</p><p> x direction pressure drop can be obtained as follow :</p><p><b> (5) </b></p><p> Where DH is hydraulic diameter of shell-side.</p>
25、;<p> The boundary condition is x = 0 wit h Δp ( x) = 0 , so t he integral of t he Equa. (5) can be expressed as :</p><p><b> (6)</b></p><p><b> (7)</b></p&g
26、t;<p> 2. 3 Pressure drop of x2z direction</p><p> According to distribution and local flow pressure drop of fluid flow from x direction turn to z direction , we can obtain it s local pressure drop
27、 Equation as follow :</p><p><b> (8)</b></p><p> 2. 4 Pressure drop of z coordinate</p><p> According to the generic Equation of local pressure drop of fluid , we ca
28、n obtain it s local pressure</p><p> drop Equation of fluid flow through mini2ostioles of distributor baffle in z direction as follow :</p><p><b> (9)</b></p><p> Whe
29、re A ( x) denote punched ratio as a f unction of independent variable x.</p><p> 2. 5 Homo-distribution Equation</p><p> It is well known that t he condition of homo-distribution of fluid flo
30、w through distributor baffle can be deduced by mechanical energy balance Equation from inlet to cross section of outlet . The basic homo-distribution Equation is shown as follow :</p><p><b> (10) <
31、/b></p><p> 2. 6 Analysis and solution</p><p> Combining Equa.(7) , (8) , (9) with Equa. (10) , it will obtain the following Equation :</p><p><b> (11)</b></p&
32、gt;<p> When x = X ,t hen it can be deduced the pressure drop of boundary condition :</p><p><b> , and </b></p><p> Putting the pressure drop under x = X into Equa. (10) ,
33、 then it can be deduced the following Equation :</p><p><b> (12)</b></p><p> Associating with Equa. (11) and Equa. (12), and simplifying expression , t hen it can be deduced the fo
34、llowing Equation :</p><p><b> (13)</b></p><p> Under the ideal model, optimal punched ratio can be expressed as follow :</p><p><b> (14)</b></p>&l
35、t;p> 3 Mathematical Model of In-line-square Aligned Tube Bundle</p><p> For the in-line-square aligned tube bundle of shell-side of shell-and-tube heat exchanger, we define</p><p> as tub
36、e pitch , d as outer diameter , and L as installation distance. So tube rows of shell-side under in-line-square aligned can be expresses as ,: , and putting them into Equa. (4), then the velocity of x direction can be ex
37、pressed as : (15)</p><p> According to the Equa. (7), (8) , and (9) , the pressure drop of x direction , x-z direction , and z direction at in-line-square aligned condition of shell-side can als
38、o be written as Equa. (16), (17) and (18) ,respectively :</p><p><b> (16)</b></p><p> Where denotes local pressure drop coefficient of crossing a t ube at t he in-line-square alig
39、ned.</p><p><b> (17) </b></p><p><b> (18)</b></p><p> Put ting Equa. (16) , (17) and (18) into Equa. (10), it can be deduced as follow.</p><p
40、><b> (19)</b></p><p> When x = X , it can be deduced t he pressure drop of boundary condition as follow :</p><p><b> , and </b></p><p> And p ut ting
41、 t hem into Equa. (10) , then it can be deduced the following Equation :</p><p><b> (20)</b></p><p> Associating with Equa. (19) and Equa. (20), and simplifying expression , t hen
42、it can be deduced following Equation :</p><p><b> (21)</b></p><p> Under the in-line-square aligned tube bundle of shell-side of shell-and-tube heat exchanger, optimal punched rati
43、o of fluid dist ributor in the inlet or outlet region can be expressed as follow :</p><p><b> (22)</b></p><p> In Equa. (15) to Equa. (21), A z and A x can be expressed as follows
44、:</p><p><b> (23)</b></p><p><b> (24) </b></p><p> It define ,and denote the ratio of out diameter of tube to tube pitch , putting it and Equa. (23)and (2
45、4) into Equa. (22) ,it will be deduced follow Equation</p><p><b> (25) </b></p><p> From Equa. (25), it has been shown that the optimal punched ratio of fluid distributor related t
46、o many factors which can be classified into two aspect s. One aspect is struct ural parameter of heat exchanger of shell-side such as out-diameter of tube, tube pitch , rows of tube buddle , cut length of distributor, an
47、d tube arrangement style. The other aspect is operating characteristic such as Reynolds number which can changer local pressure drop coefficient.</p><p> Although a mathematical model of shell-side fluid fl
48、ow homo-distribution be found , and the model shows the relationship of optimal punched ratio to structural parameter of heat exchanger and operating characteristic , but its correctness need to be validated by numerical
49、 and experimental methods. Future investigation will go on in numerical and experimental methods respectively.</p><p> 4 Conclusions</p><p> Through founding mathematical model and above anal
50、ysis, it is concluded as following :</p><p> (1) For the in-line-square aligned tube bundle of shell-side , main factors of fluid flow maidist -ribution are as such punched ratio of distributor , out-diamet
51、er of tube , tube pitch , rows of tube buddle , cut length of distributor , and tube arrangement style.</p><p> (2) According to Equa. (25), it is easy to design a optimal fluid flow dist ributor .</p>
52、;<p> (3) The pressure drop of shell-side is cube of rows which fluid cross flowed. To decrease pressure</p><p> drop of shell-side must decrease rows of fluid cross flowed.</p><p> Re
53、ferences</p><p> [ 1 ] Zhou Sen2Quan. The analysis of heat exchanger performance wit h temperature nonuniformity of inlet [J ] . Gongcheng Rewuli Xue-bao , 1994 ,15 (4) :8211.</p><p> [2 ] Chi
54、ou J . P. . The effect of nonuniformity of inlet fluid temperature on t he t hermal performance of cross-flow heat exchanger [ C] .Proc. of 7th international heat transfer conf . , 1982 :1792126.</p><p> [
55、3 ] Ulrich Mohr , Horst Gelbe. Velocity dist ribution and vibration excitation in tube bundle heat exchangers[J ] . Int . J . Thermal . Science. ,2000 ,39 (4) :4142421.</p><p> [ 4 ] S. S. Mousavi , K. Hoom
56、an. Heat and fluid flow in ent rance region of a channel with staggered baffles[J ] . Energy Conversion and Management ,2006 , 47 (18) :2 01122 019.</p><p> [ 5 ] L. Maharaj , J . Pocock , B. K. Loveday. Th
57、e effect of dist ributor configuration on the hydrodynamics of t he teetered bed separator</p><p> 軸流管殼式換熱器殼側(cè)流體進/ 出口分布</p><p><b> 擋板的理論研究</b></p><p> 曾文良1 ,2 , 胡顯平1 ,
58、 鄧先和1</p><p> (1. 華南理工大學(xué)傳熱強化與過程節(jié)能教育部重點實驗室, 廣東廣州 510640 ;2. 衡陽師范學(xué)院化學(xué)與材料科學(xué)系, 湖南衡陽 421001)</p><p> 摘 要:大型、超大型殼程軸流管殼式換熱器殼側(cè)流體的流動分布不均嚴重影響著換熱器的整體傳熱性能,而在殼側(cè)入口和出口位置安裝流體分布擋板是解決這一問題的方法之一. 文中從流體分布擋板的影響參數(shù)入手
59、,從理論上推導(dǎo)了擋板的開孔率與各種結(jié)構(gòu)參數(shù)之間的數(shù)學(xué)模型,并且推導(dǎo)出優(yōu)化的擋板設(shè)計參數(shù)方程,為殼側(cè)流體的實驗研究與數(shù)值研究提供了參考與方向.</p><p> 關(guān)鍵詞:管殼式換熱器; 軸向流; 流體分布; 結(jié)構(gòu)優(yōu)化; 理論模型</p><p> 中圖分類號: TQ051. 5 文獻標識碼:A</p><p> 0 介紹 由于這些優(yōu)勢,降低殼程,大
60、對數(shù)平均溫差(數(shù)平均溫差)壓力下降,消除了傳熱管的振動,更好的整體傳熱性能,軸向流管殼式換熱器與部分擋板殼式換熱器相比在各種工業(yè)生產(chǎn)中變得更加受歡迎。隨著工業(yè)生產(chǎn)設(shè)備的規(guī)模變得越來越大,換熱器作為一種工業(yè)生產(chǎn)通用設(shè)備,還需要滿足工業(yè)生產(chǎn)過程的要求,以及換熱器傳熱能力越來越大。由于對殼管式換熱器管的長度是由加工工藝條件決定,有必要擴大殼端直徑,以擴大傳熱能力。隨著換熱器的直徑的增大和長徑比的減?。↙/D),殼程流體流動分布不均變得更難以控
61、制和殼層的壓力降增長的更快,這不僅降低了換熱器整體傳熱性能,而且也引起了傳熱管的振動。這些都是被ZHOU Sen-quan ,Chiou J . P ,Ulrich Mohr and Hor st Gelbe證明的。為了使流體流動同源分布,S. S. Mousavi , K. Hooman and L. Maharaj , J . Pocock , B. K.Loveday已經(jīng)構(gòu)建了一個流體流動分布結(jié)構(gòu)并將其設(shè)置在設(shè)備的進出口區(qū)域。但
62、沒有任何有關(guān)軸流管殼式換熱器流體流動分布的報告,特別是大規(guī)模和超大規(guī)模換熱器。</p><p> 管殼殼端配置與軸流式換熱器示意圖1為了表達研究的物理模型更簡潔,當(dāng)我們考慮到部分單位和其進口和出口唯一時,我們把它看作一個矩形熱處理軸流換熱器。該換熱器管子是36毫米規(guī)格,尺寸為φ25 mm ×2. 5 mm ×1 000 mm。該換熱器外觀尺寸是維立方體360毫米× 120毫米
63、215; 1 000毫米。該換熱器高程圖2(a)所示,布置風(fēng)格和管參數(shù)如圖2(b)所示。</p><p> 數(shù)學(xué)模型為了找到了理論方法,數(shù)學(xué)模型理論分析模型,必須首先建立如圖(3)所示。以下假設(shè)的建模和光照是通過進口和分配器區(qū)域流體流動必要的。</p><p> ?。?)許多小孔是分布在流體擋板上,小孔直徑是微不足道的。(2)分布式擋板打孔比率是一個連續(xù)x函數(shù)。(3)在x方向流體流
64、量,如圖所示3所示。(4)流體流速通過均勻分布擋板?;谏鲜黾僭O(shè)和下一步的分析,可以很容易地分別推導(dǎo)出x方向的速度分布和壓力降的x方向,z方向和x-z方向。2.1速度分布的x坐標質(zhì)量平衡方程的無窮小如圖4所示 ,差分方程的X方向的方程式:</p><p><b> ?。?) </b></p><p> 用和分別表示X坐標和Z坐標,有</p>
65、<p><b> ?。?)</b></p><p> 邊界條件是:x = X 和 u( x) = 0,所以方程式(2)用積分可表示為:</p><p><b> ?。?)</b></p><p><b> ?。?)</b></p><p> 2.2 X坐標的
66、壓力降</p><p> 無窮小面積的能量平衡方程,如圖4所示。它差分方程x方向的壓力降,可表示為: (5)</p><p> 殼側(cè)的水力直徑,邊界條件是x = 0和Δp ( x) = 0,所以他的積分方程式(5)可以表示為:</p><p><b> ?。?)</b&g
67、t;</p><p><b> ?。?)</b></p><p> 2.3 X-Z方向的壓力降</p><p> 據(jù)當(dāng)?shù)亓髁糠植己土鲃拥牧黧w壓力降,由x方向轉(zhuǎn)到z方向,我們可以得到如下方程的局部壓力降:</p><p><b> ?。?)</b></p><p>
68、2.4 Z坐標的壓力降</p><p> 據(jù)當(dāng)?shù)氐牧黧w壓降通用公式,我們可以得到它的流體通過的小型分流器擋板孔當(dāng)?shù)貕航捣匠淘趜方向如下:</p><p><b> ?。?) </b></p><p> 2.5 同質(zhì)分配公式</p><p> 眾所周知的是,同源流體通過分流器可以通過機械擋板能量平衡方程推導(dǎo)出
69、進口交叉出口段的流量分布情況?;就|(zhì)分配公式如下所示:</p><p><b> ?。?0)</b></p><p><b> 分析和解決方案</b></p><p> 聯(lián)合(7),(8),(9)和(10)式,它會得到如下方程:</p><p><b> ?。?1)</b>
70、;</p><p> 當(dāng)x = X,可以推斷壓降的邊界條件:</p><p><b> ,和</b></p><p> 把壓降下x = X代入方程(10),那么我們可以得出以下方程:</p><p><b> ?。?2)</b></p><p> 聯(lián)系方程式(11)和
71、方程式(12),并簡化表達,那么可以得出以下方程:</p><p><b> ?。?3)</b></p><p> 在理想的模型,優(yōu)化沖壓比可表示如下:</p><p> ?。?4) </p><p> 3 數(shù)學(xué)模型在一平方米上的管束</p><p> 對于管殼式換熱器的殼側(cè)
72、的內(nèi)插管束,我們定義為管束管間距,d為外徑和為安裝距離。因此殼下側(cè)管排線,方形排列,可表示為:,,并把它們代入方程式(4),則x方向的速度可以表示為:</p><p><b> ?。?5)</b></p><p> 根據(jù)方程式(7),(8),(9),壓降的x方向,x-z方向和z方向在內(nèi)插管束對齊殼側(cè)方向的條件也可以分別寫成方程式(16),(17)和(18):<
73、/p><p> (16) </p><p> 其中表示當(dāng)?shù)貕航翟诠苁€一方對齊的管系數(shù)</p><p><b> ?。?7)</b></p><p><b> ?。?8)</b></p><p> 把(16)(17)(18)式代入方程(10)式,可簡化得到:<
74、;/p><p><b> ?。?9)</b></p><p> 當(dāng) x = X 時,可以推導(dǎo)出如下的邊界條件壓降:</p><p><b> , and </b></p><p> 將他們代入方程(10)可得到下式:</p><p><b> ?。?0)<
75、/b></p><p> 聯(lián)合方程式(19)和方程式(20),簡化表達,可以推斷公式如下:</p><p><b> ?。?1)</b></p><p> 根據(jù)該對齊殼的管殼式換熱器管束方,最佳流體的分配比例,進口或出口區(qū)域可表示如下:</p><p><b> ?。?2) </b><
76、;/p><p> 從方程(15)式到方程(21), </p><p><b> (23)</b></p><p><b> ?。?4)</b></p><p> 定義,表示管內(nèi)管直徑與管間距之比,把它和方程式(23)(24)代入方程式(22),可得妻方程如下:</p><p&g
77、t;<b> ?。?5)</b></p><p> 從方程式(25)看出,它已被證明是最佳的流體分配沖壓比,有關(guān)的很多因素可劃分為兩個方面。一個方面是熱殼側(cè)換熱器結(jié)構(gòu)參數(shù),如外管直徑,管間距,管的排列,分流結(jié)構(gòu)切割長度,管安排的風(fēng)格。另一個方面是操作特性,如雷諾數(shù)可兌換當(dāng)?shù)貕航迪禂?shù)。</p><p> 雖然殼側(cè)流體流動同源分布的數(shù)學(xué)模型已經(jīng)發(fā)現(xiàn),以及模型顯示了最佳
78、的比例關(guān)系,以沖壓換熱器結(jié)構(gòu)參數(shù)和運行特點,但它的正確性,需要通過數(shù)值和實驗方法驗證。調(diào)查將會分別用數(shù)值和實驗方法繼續(xù)進行。</p><p><b> 總結(jié)</b></p><p> 通過建立數(shù)學(xué)模型和上述分析,可以得出結(jié)論如下:</p><p> ?。?)對于管束對齊殼側(cè),流體流動的主要因素是外管直徑,管間距,管束排列,分流結(jié)構(gòu)切割長度,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 管殼式換熱器考慮擋板傾角對殼側(cè)流體流動影響的數(shù)值分析.doc
- 管殼式換熱器考慮擋板傾角對殼側(cè)流體流動影響的數(shù)值分析.doc
- 遞級流管殼式換熱器殼程側(cè)強化傳熱研究.pdf
- 管殼式換熱器殼側(cè)流場數(shù)值模擬.pdf
- 管殼式換熱器殼側(cè)湍流流動的數(shù)值模擬及實驗研究
- 管殼式換熱器殼程強化傳熱研究.pdf
- 單殼程雙管程管殼式換熱器設(shè)計
- 縱流管殼式換熱器的計算優(yōu)化與實驗研究.pdf
- 管殼式換熱器殼程流場與性能研究.pdf
- 管殼式換熱器殼側(cè)氣液兩相流動和傳熱的數(shù)值模擬研究.pdf
- 縱流管殼式換熱器流動與傳熱性能的理論與實驗研究.pdf
- 管殼式換熱器設(shè)計
- 管殼式換熱器資料
- 管殼式油冷器殼側(cè)傳熱強化的研究.pdf
- 管殼式換熱器殼程數(shù)值模擬及結(jié)構(gòu)優(yōu)化研究.pdf
- 多種新型管殼式換熱器的殼程傳熱強化問題研究.pdf
- 換熱器課程設(shè)計---管殼式換熱器
- 什么是管殼式換熱器
- 管殼式換熱器振動的原因
- 管殼式換熱器數(shù)值模擬研究.pdf
評論
0/150
提交評論