版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p><b> 附錄A 譯文</b></p><p> 飽和全風化火山巖填土穩(wěn)定狀態(tài)的三軸壓縮試驗</p><p> 翟 陽1,李焯芬2,羅錦添3</p><p> (1.煙臺大學基建處, 山東煙臺264005;2.香港大學土木工程系, 香港薄扶林;</p><p> 3.加拿大Carleton大學
2、土木及環(huán)境工程系, 渥太華K1S 5B6)</p><p> 摘要:在重塑試樣的三軸壓縮實驗基礎上,對全風化火山巖松散填土的穩(wěn)定狀態(tài)進行了分析研究。 探討了試樣的相對壓實度、初始含水量、應變速率對穩(wěn)定狀態(tài)的影響。 得出了穩(wěn)定狀態(tài)線在平面內不唯一的結論,其位置隨上述因素變化。提出了一種歸一化方法,在考慮相對壓實度、初始含水量效應的情況下可以給出單一的穩(wěn)定狀態(tài)線。</p><p> 關鍵詞
3、: 全風化火山巖;松散填土;穩(wěn)定狀態(tài)</p><p> 在香港,完全分解的火山(CDV)殘余土壤用于道路并且暫時代替斜坡的主要填充材料之一。在20世紀70年代之前,很多填充斜坡通常是沒有緊密壓縮建成的。在20世紀70年代內,兩個發(fā)生傾斜滑坡的災難性填充是在20世紀60年代內建造的。這樣的滑落是由靜止的液化的引起的[1 , 2 ]。由于仍然有地區(qū)存在這種很多松散的填充斜率,為了改進和補救工作,有良好的CDV 松散
4、填充靜止的液化行為知識是重要的。穩(wěn)態(tài)行為是這篇文章的關鍵要素之一。這篇論文的目的是調查松散的填充,通過一系列三軸壓縮測試CDV的穩(wěn)態(tài)行為。</p><p> 在靜態(tài)液化和土壤倒塌行為的分析中穩(wěn)態(tài)是一個非常重要的概念。它可以在空間中通過一條直線來描述或者在和中顯示。其中,和。獨一無二的穩(wěn)態(tài)線是很有爭議的。一些研究[3 , 4 ]顯示這條穩(wěn)態(tài)行是獨特的。另一方面,一些研究顯示這條穩(wěn)態(tài)行不獨特并且取決于因素(例如:干
5、燥密度,壓力路徑,最初限制的壓力,應變控制,載荷控制試驗等等)。這些研究包括由Yamamuro 和Lade[5 ],Vaidetal[6 ],Riemer和Seed [7 ],康拉德[8 ],赫德和Hassona[9 ]等等所作的工作。全部研究在圖上顯示唯一穩(wěn)態(tài)線,但是在圖上這條穩(wěn)態(tài)線好像隨許多因素而變化。</p><p><b> 1 試驗方案</b></p><p&
6、gt; 本試驗中的土壤取自香港新領土的大網仔道路。它是一種完全分解火山殘余的土壤。最佳含水量是百分之三十一,最大的干燥密度是1. 36Mg/ m3,粒子密度是2. 68Mg/ m3和粘土含量是百分之四十一。</p><p> 試樣由這種潮濕的填充方法形成,并且尺寸的高度是152毫米和直徑是76毫米。樣品是在一定含水量五個層緊密結合的。在最初密度被選擇之后,總重被計算,每個層對相同的厚度有相同數量的土壤完全緊密
7、結合。試驗飽和是讓二氧化碳通過試樣從底到頂地進行,隨后有的水通風。在飽和期間處理細胞壓力被定在30kPa,并且二氧化碳和水通風在20kPa的背面壓力使用。在試驗中用到一個Wykeham Farrance Tritech 100應變控制儀器,一個Wykeham Farrance交換機和AT 2000數據畫圖儀。</p><p> 不排水三軸壓縮試驗(CIU)是在不同試樣干燥密度,不同含水量和不同應變比的情況下進行
8、的。</p><p><b> 2 試驗結果</b></p><p> 對于全部測試的試樣來說,穩(wěn)態(tài)是在軸向應變到達大約百分之二十的時候達到的,其中當軸向的應變繼續(xù)增加時,軸向載荷,毛孔水壓力和體積變化保持不變。除試樣有展示應變硬化行為的200 kPa的更高鞏固壓力之外,樣品中的多數顯示應變軟化的應變。</p><p> 在圖1和圖2中可
9、以看到全部試樣的穩(wěn)態(tài)行為。 這里分別表示在穩(wěn)態(tài)的偏差應力、平均有效應力和比體積。據研究所知,在圖上穩(wěn)態(tài)點趨近于一條獨特的直線。因此,對于所有的試樣在穩(wěn)態(tài)來說,在之間有一種獨特的關系。然而,在圖上對于不同的試樣會出現不同的穩(wěn)態(tài)直線。所以,在圖上穩(wěn)態(tài)線是不唯一的。它取決于樣品參數和測試條件。這種趨勢的原因可能與土壤的高的好的成分有關。土壤是有高精細的一種沙,它可能不能表現這條穩(wěn)態(tài)線與干凈的沙相同。</p><p>
10、 圖1 試驗結果的關系 圖2試驗結果的關系</p><p> CIU , Rc = 90 %, Mc = 31 % ◇CIU , Rc = 80 %, Mc = 31 % △CIU , Rc = 80 %,</p><p> Mc = 28 % ×CIUF,Rc = 80 %, Mc = 31 %。</p><p> 2.1 相對壓縮的影響&
11、lt;/p><p> 相關的緊密程度Rc被定義為一件樣品的干燥密度和土壤的最大的干燥密度的比率。試樣的關系在相同的含水量=31%并且不同的壓縮系數Rc可以在圖3中看到。 </p><p> 據研究所知,可能觀察有不同的Rc的試樣有不同的穩(wěn)態(tài)行。對相同的Rc來說,試樣的穩(wěn)態(tài)點傾向于集中于一條相同的穩(wěn)態(tài)線。在圖上穩(wěn)態(tài)線的位置依賴相關的緊密程度Rc。在圖中可以看到Rc越高,穩(wěn)態(tài)線越低。相關的緊密
12、程度是影響土壤的穩(wěn)態(tài)的一個重要的因素。</p><p> 2.2 最初含水量的影響</p><p> 試樣形成的最初含水量被定義為試樣的含水量。有相同的相關緊密程度Rc = 80%的試樣關系和不同的最初含水量成分Mc可以在圖4中看到。 </p><p> 圖3 不同Rc試樣的關系 圖4 不同Mc試樣的關系</p><p> □
13、CIU , Rc = 90 %, Mc = 31 % △CIU , Rc = 80 %, Mc = 28 % ◇CIU , Rc = 80 %,</p><p> Mc = 31 % ◇CIU , Rc = 80 %, Mc = 31 %。</p><p> 從數字中看出一種趨勢,盡管利用掃描儀,可能看見有相同Mc的試樣的穩(wěn)態(tài)點集中于一條相同的穩(wěn)態(tài)線。在圖中穩(wěn)態(tài)線的位置大多數取決于初始
14、含水量Mc。在圖中Mc越高,穩(wěn)態(tài)線越低。這表明最初含水量對土壤的穩(wěn)態(tài)有重要影響。</p><p> 2.3 應變比的影響</p><p> 當大多數試驗在0.06毫米/分(CIU)的應變比下執(zhí)行,幾件試樣試驗在0.3毫米/分(CIUF)的應變比下進行。圖 5表現CIU測試的關系和CIUF試樣測試與相同Rc =80%和Mc= 31%。在圖上,看起來穩(wěn)態(tài)產品給CIUF測試比適合CIU測試高
15、。這暗示那個應變比對那些土壤的穩(wěn)態(tài)有影響。在圖上,應變比越高,穩(wěn)態(tài)線越高。</p><p> 2.4 穩(wěn)態(tài)線的標準化</p><p> 像上面討論的那樣,在圖上那些穩(wěn)態(tài)的松散填充在不排水三軸壓縮測試的CDV的可能被描述為獨特的直線,但是在中穩(wěn)態(tài)線并不唯一。那些穩(wěn)態(tài)線的位置依賴最初含水量,相關緊密程度和應變比。為了更好的理解和清楚的應用,一條單個的穩(wěn)態(tài)線在代表過程中需要。為了在圖上生成這
16、樣的一條穩(wěn)態(tài)線,一標準化方法提議在這里考慮到相關的緊密程度Rc 和最初含水量Mc的效應。一般說來,全部因素影響松散填充可能與標準化一起考慮到的CDV的穩(wěn)態(tài),如果有足夠的測試數據。</p><p> 在這項研究過程中,在圖上可以通過標準化結果得到一單獨的穩(wěn)態(tài)線,使結果在相同參考有關緊密程度和參考最初含水量正常時。規(guī)范化空隙比,e,可能從初始空隙比經過固化得到,ec如下:e = ecRnMn,在這里,Rn和Mn 分
17、別標準化系數適合相關的緊密程度和最初含水量。</p><p><b> ,,</b></p><p> 在這里,Rcr和Rc是標準化和土壤的原先的相關的緊密程度的參考有關的緊密程度;Mcr和Mc是標準化和土壤的原先的最初含水量的參考最初含水量。 </p><p> 對于那些CIU 測驗結果在0.06毫米/分的應變比,相關緊密程度Rcr 認
18、為是80%和參考最初含水量Mcr為31%。標準化的關系可以從圖6中看出。</p><p> 圖5 CIU和 CIUF試驗的 關系 圖6 標準化的 關系</p><p> ◇CIU , Rc = 80 % , Mc = 31 % ◇CIU , Rc = 80 % , Mc = 31 %</p><p> ×CIUF , Rc = 80
19、% , Mc = 31 % □CIU , Rc = 90 % , Mc = 31 %</p><p> △CIU , Rc = 80 % , Mc = 28 %</p><p> 在標準化之后,由于一些較小量,穩(wěn)態(tài)點趨近于一條直線,建議在圖上用線性獨特的穩(wěn)態(tài)線。隨著回歸分析,穩(wěn)態(tài)線在圖和圖上如下: ;。在這里標準化方法提議能用來預言穩(wěn)態(tài)松散填充與不同相關的緊密程度和最初含水量一起
20、的行為。</p><p><b> 3 結論</b></p><p> 基于不排水三軸壓縮試驗在完全分解的火山土的穩(wěn)態(tài)分析中應用,可以得到以下的結論:</p><p> 3.1 對于不排水三軸壓縮試驗來說,試樣在軸應變?yōu)榇蠹s20%時達到穩(wěn)定狀態(tài)。</p><p> 3.2 在中穩(wěn)態(tài)線是唯一的線性的,但是在圖中并不
21、唯一。</p><p> 3.3 在穩(wěn)態(tài)線中試樣相關壓縮程度起著很重要的影響。在圖中,越高,穩(wěn)態(tài)線越低。</p><p> 對一個試樣多級加荷三軸剪切試驗的探討</p><p><b> 車 承 國</b></p><p> (西北電力設計院,陜西 西安 710032)</p><p>
22、 摘要:本文簡述了三軸剪切試驗的一個試樣多級加荷剪切適用條件及在實際操作中的注意事項。</p><p> 關鍵詞:三軸剪切試驗;多級加荷;剪應力;剪應變;莫爾- 庫侖理論</p><p> 三軸剪切試驗測定土的抗剪強度參數, 常規(guī)方法一般需要3~4個試樣, 所用試樣較多。但在實際工程中,由于某些地基或土工建筑物采取原狀土比較困難, 或因試樣的不均勻性, 難以選取3~4 個較均勻的試樣,
23、 這樣進行常規(guī)三軸試驗就受到了限制?!锻凉ぴ囼灧椒藴省稧B/T50123 - 1999 允許采用一個試樣多級加荷試驗測定抗剪強度參數, 由于避免了試樣之間的差異,所測得的成果比較規(guī)律, 強度包線易于繪制, 比多個試樣三軸試驗有一定的優(yōu)點。但這種做法有一定的適用條件, 本文就此進行了試驗分析和理論探討。</p><p> 三軸試驗中一個試樣多級剪切的適用性分析</p><p> 常規(guī)三
24、軸剪切試驗的原理基于材料力學中的雙軸應力狀態(tài)理論</p><p> 試驗中保持σ3 不變, 不斷增加σ1,直至試樣在α= 45°+φ2 面上剪切破壞為止。剪切破壞的標準是τa =τf 對于砂石料、硬土、超固結土, 試樣在剪切破壞時的現象是十分清楚的, 它們的剪應力與應變關系如圖1 的曲線①所示, 即隨著剪應變的增加, 剪應力也增加, 當剪應力達到土的抗剪強度τ后, 隨著剪應變增加, 土的剪應力呈下降趨
25、勢。因此, 在試驗和資料分析中容易判定其抗剪強度τf 。但對于一些有剪切硬化性質的粘土、軟土,它的應力、應變關系如曲線②所示。在曲線②上</p><p> 圖1 剪應力與應變關系圖</p><p> 我們無法得到峰值點, 即無法直觀判定土的抗剪強度τf 值。為此, 工程上采用了應變破壞標準,即當土的應變達到某個值后, 雖然未出現剪應力峰值, 但也認為土樣已破壞, 相應應變下的剪應力就可
26、確定為土的抗剪強度值。而這個破壞應變, 工程上一般可依工程的重要性不同而選為10 %、15 %和20 %。以上論述是討論一個樣多級剪的基礎。其次, 用莫爾- 庫侖理論整理三軸試驗資料時, 同一組試樣在剪切破壞時的破裂面a= 45°+φ2 相等也是討論一個樣多級剪的基礎。下面是分析的結論:</p><p> 1) 一個樣多級三軸剪的適用土樣為砂石料土、硬土和超固結土(一般粘土在低圍壓固結條件下剪切時也有
27、剪應力峰值存在,但實質上屬于超固結定義的范疇)。因為對于這些土,剪切破壞時相應的剪應變小,因而分級剪切后的累計剪應變也不至過大(一般不超過20 %)。同時,各級的剪切破壞面為同一破壞面,符合莫爾- 庫侖理論。</p><p> 2) 對于軟土、有剪切硬化性質的粘土, 因為在剪切時不出現剪切峰值, 無法直接判斷在該級圍壓下的抗剪強度, 若采用應變破壞標準確定抗剪強度τf , 勢必分級累積的破壞應變過大而不符合工程
28、要求和規(guī)范值(如前述的10 %、15 %、20 %),反之, 若滿足累積破壞應變標準, 勢必要降低抗剪強度值, 這也就是為什么一樣多剪求的抗剪強度指標偏小的主要原因。其次, 對于軟土、有剪切硬化性質的粘土, 三軸剪切時破裂面的位置隨所選的應變值不同而不同。這時, 一樣多剪時各級圍壓下確定的抗剪強度具有不同的破裂面位置。經過資料整理校正后雖具有相同的破裂面, 但對莫爾- 庫侖理論來說是較勉強的。</p><p>
29、 2 三軸試驗中一個試樣多級剪切的試驗驗證</p><p> 本試驗依據GB/ T50123 - 1999《土工試驗方法標準》, 使用南京土壤儀器廠TSZ 30 - 210型臺式三軸儀及其TWJ - 1型土工試驗微機數據采集處理系統。</p><p> 典型的試驗結果如圖2、圖3 所示: 飽和試樣強度包線如圖4 所示 </p><p><b> 圖2
30、 人工制備樣</b></p><p><b> 圖3 原狀飽和樣</b></p><p> 圖4 飽和粉土強度包線</p><p> 從圖2、圖3所示的試驗結果中, 說明了上述分析結論。從表1中選取部分試驗強度包線如圖4 列舉所示, 對于飽和粉土的一個試樣多級加荷試驗亦應持謹慎態(tài)度。對于一個試樣多級加荷試驗在何條件下(如各級應
31、變的控制范圍等)能與實際的常規(guī)三軸試驗抗剪強度更能接近, 還有待于進一步分析、對比和探討, 由于常規(guī)試驗對試樣的均勻性要求較高, 因而也是有一定的難度, 還需在條件許可的情況下, 逐步進行。</p><p><b> 3 結論及建議</b></p><p> 1) 一樣多剪的三軸試驗適用于硬土、超固結土, 對于高含水量的粘性土(粉土) 一般不能采用這種試驗方法。&
32、lt;/p><p> 2) 試驗中應注意如下事項:</p><p> ①對CU 試驗, 為使試驗恢復到等向固結狀態(tài), 必須退去上級剪切時的軸向壓力, 待孔壓達穩(wěn)定后再施加下一級圍壓, 而后級固結圍壓應大于前級圍壓下破壞時的大主應力。對于UU 試驗則不需退去前級軸向壓力。</p><p> ?、趯τ贑U試驗,第一級圍壓最好采用50kPa。</p><
33、;p> ?、蹖τ赨U 試驗,通常無特殊要求時, 第一級圍壓可取50或100kPa,以后各級可按第一級圍壓的1~3倍遞增。下級圍壓施加之后應穩(wěn)定10~20分鐘再進行剪切, 以消除前級剪切的影響。施加第二級或以后各級圍壓的剪切試驗, 應注意控制在第一級圍壓下的剪切破壞的到達和剪應變的大小。對于脆性破壞的結構性強的試樣,破壞應變一般小于5% , 甚至小于3 %。對于塑性破壞的試樣, 破壞應變可控制在5%~7%。</p>&
34、lt;p><b> 附錄B 外文文獻</b></p><p> Triaxial Compression Test on Steady State Behavior of Saturated CDV Soils</p><p> ZHAI Yang1, LE Zhuofen2, Luo Jintian3</p><p> (1.C
35、onstruction Office, Yantai University, Yantai 264005, China; 2.Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong,China; 3. Department of Civil and Environmental Engineering, Carleton
36、University, Ottawa, Ontario, K1S 5B6, Canada)</p><p> Abstract: Based on a comprehensive triaxial untrained compression test program on remolded specimens, the steady state of CDV loose fills was analyzed.
37、The effect of relative compaction, initial moisture content of specimens and strain rate was investigated. A normalization method is proposed to produce a unique steady state line inconsiderate on of the effect of relati
38、ve compaction and initial moisture content.</p><p> Key words: completely decomposed volcanic; loose fill; steady state</p><p> CLC Number : TU 43 Document Number : A</p><p> Th
39、e completely decomposed volcanic (CDV) residual soil is one of the main fill materials used for roads and fill slopes in Hong Kong. Before 1970’s, many fill slopes were commonly constructed without compaction. In 1970’s,
40、 two catastrophic event s of flow slides took place in fill slopes built in 1960’s. The cause of such slides has been attributed to static liquefaction [1, 2]. Since there are still many loose fill slopes of this kind ex
41、isting in the area, for the purpose of upgrading and remed</p><p> The steady state is an important concept in the analysis of static liquefaction and collapse behavior of soils. It can be represented by a
42、line in the p′~ q~υ space , or on the q~ p′ and the υ~log p′ plots. Where p′= ( + 2 ) / 3, q =- and υ= 1 + e. The uniqueness of steady state line is a controversial issue. Some studies [3, 4] show that the steady state
43、line is unique. On the other hand, some studies show that the steady state line is not unique and depends on factors such as dry density, str</p><p> 1 Testing Program</p><p> The soil used in
44、 this test program was obtained from Tai Mong Tsai Road, New Territories, Hong Kong. It is a kind of completely decomposed volcanic residual soil. The optimum moisture content is 31 %; the maximum dry density is 1. 36 Mg
45、/ m3, the particle density is 2. 68 Mg/ m3 and the clay content is 41 %.</p><p> The specimens were formed with the moist tamping method, and the dimensions were 76 mm in diameter and 152 mm in height. Spec
46、imens were compacted in five layers at a certain moisture content. After the initial density was selected and the total weight computed, each layer was carefully compacted to the same thickness with the same amount of so
47、il. Specimen saturation was carried out by passing carbon dioxide through the specimen from the bottom to the top, followed by de-aired water. During the s</p><p> 2 Test Results</p><p> For a
48、ll the specimens tested, the steady state was reached at the axial strain of about 20 %, where the axial load, pore water pressure and volume change remained constant, as the axial strain continued to increase. The major
49、ity of the specimens displayed strain softening behavior, except the specimens with a higher consolidation pressure of 200 kPa which displayed strain hardening behavior. The steady state of all specimens on the ~ and ~l
50、og plot are shown in Fig.1 and Fig.2. Here, and are </p><p> 2. 1 Effect of Relative Compaction</p><p> The relative compaction is defined as the ratio of the dry density of a specimen to
51、the maximum dry density of the soil. The ~log relationship of specimens with the same moisture content = 31 % and different relative compaction is shown in Fig. 3.</p><p> It can be observed that specim
52、ens with different have different steady state lines. For the same, the steady state points of specimens tend to converge to a same steady state line. The location of the steady state line on the~log plot is dependent
53、on the relative compaction . The higher the is, the lower is the steady state line on the plot. The relative compaction is an important factor affecting the steady state of the soil.</p><p> 2. 2 Effect of
54、 Initial Moisture Content</p><p> The initial moisture content is defined as the moisture content with which the specimen is formed. The ~log relationship of specimens with the same relative compaction = 80
55、 % and different initial moisture content is shown in Fig. 4.</p><p> From this figure, a trend, although with some scatter, can be seen that the steady state points of specimens with the same converge to
56、 a same steady state line. The location of steady state line on the ~log plot is, mostly, dependent on the initial moisture content .The higher the is, the lower is the steady state line on the plot. This means that the
57、 initial moisture content has an important effect on the steady state of the soil.</p><p> 2. 3 Effect of Strain Rate</p><p> While the majority of the tests were conducted at a strain rate of
58、 0. 06 mm/ min (CIU), several specimens were tested at a faster strain rate of 0. 3 mm/min (CIUF). Fig. 5 shows the ~log relationship of CIU tests and CIUF tests of specimens with the same = 80 % and = 31 %. It appear
59、s that the steady state line for CIUF tests is higher than that for CIU tests on the ~log plot . This implies that the strain rate has an effect on the steady state line of the soil. The higher the strain rate is </p
60、><p> 2. 4 Normalization of Steady State Line</p><p> As discussed above , the steady state of CDV loose fills tested in triaxial untrained compression can be represented by a unique straight lin
61、e on the ~ plot , but it is not unique on the ~log plot . The location of steady state line is dependent on relative compaction, initial moisture content and strain rate. For the purpose of better understanding and cle
62、ar application, a single steady state line is needed in representation. To produce such a line on the ~log plot , a normalization method i</p><p> In which, and are the reference relative compaction for
63、normalization and the original relative compaction of the soil; and are the reference initial moisture content for normalization and the original initial moisture content of the soil.</p><p> For the CIU t
64、est results at a strain rate of 0. 06 mm/min, the reference relative compaction is taken as 80 % and the reference initial moisture content as 31 %. The normalized ~log relationship is shown in Fig. 6.</p><
65、p> After normalization, with some minor scatter , the steady state point s tend to converge to a straight line, suggesting a linear unique steady state line on the ~log plot. With regression analysis, the steady sta
66、te line equation on the ~ and ~log plot are given as: = 1. 42; = 2. 575 - 0. 122ln. </p><p> The normalization method proposed here could be used to predict the steady state behavior of loose fills with
67、 different relative compactions and initial moisture contents.</p><p> 3 Conclusions</p><p> Based on the triaxial untrained compression test s on steady state of a completely decomposed volca
68、nic, the following conclusions can be drawn:</p><p> 3. 1 For triaxial untrained compression tests, specimens reached the steady state at the axial strain of about 20 %.</p><p> 3. 2 The stead
69、y state line of specimens is a unique linear line on the ~ plot , but it is not unique on the ~log plot .</p><p> 3. 3 The relative compaction of specimens () has an important effect on the steady state l
70、ine. The higher the is , the lower is the steady state line on the ~log plot .</p><p> 3. 4 The initial moisture content of specimens () affect s the location of steady state line. The higher the is , th
71、e lower is the steady state line on the ~log plot .</p><p> 3. 5 Compared with the CIU tests, the CIUF tests give a higher steady state line on the ~log plot .</p><p> 3. 6 A normalization m
72、ethod taking into account of the relative compaction and the initial moisture content has been proposed to produce a single steady state line on the ~log plot .</p><p> Acknowledgment</p><p>
73、 The content of this paper is based in part on the Ph. D work of the first author under the supervision of the last two authors. The tests were conducted in the soil laboratory of Civil Engineering Department, the Univer
74、sity of Hong Kong. The assistance provided by the University is sincerely acknowledged.</p><p> References:</p><p> [1] Government of Hong Kong. Report on the Slope Failures at Sau Mau Ping, A
75、ugust, 1976, [R]. Hong Kong: Government of Hong Kong, 1977.</p><p> [2] Lumb P. Slope failure in Hong Kong [J]. Quartly Journal of Engineering Geology , 1975 , 8 : 31~65.</p><p> [3] Casagrand
76、e A. Liquefaction and cyclic deformation of sands: A critical review [J]. Harvard Soil Mechanics Series, 1975, 88, (Special Volume).</p><p> [4] Poulos S J. Castro G, France J W. Liquefaction evaluation pr
77、ocedure [J]. Journal of Geotechnical Engineering , ASCE , 1985 , 116 (6) : 722~792.</p><p> [5] Yamamuro J A, Lade P V. Steady- State concepts and static liquefaction of silly sands [J]. Journal of Geotechn
78、ical and Environmental Engineering , ASCE , 1998 , 124 (9) : 868~877.</p><p> [6] Vaid Y , Chung E K F, Kuerbis R H. Stress path and steady state [J]. Canadian Geotechnical Journal, 1990 , 27 :1~7.</p>
79、;<p> [7] Riemer M F, Seed R B. Factors affecting the apparent position of steady state line [J]. Journal of Geotechnical and Geoenvironmental Engineering , ASCE , 1997 ,123 (3) : 281~288.</p><p> [
80、8] Konrad J M. Minimum untrained strength of two sands [J]. Journal of Geotechnical Engineering, ASCE , 1990 , 116 (6) :932~947.</p><p> [9] Hird C C, Hassona F A K. Some factors affecting the liquefaction
81、and flow of saturated sands in laboratory Tests [J]. Engineering Geology , 1990 , 28 :149~170. </p><p> Discussion of Triaxial Shear Test for Multilevel Adding Load of a Kind of Samples</p><p>
82、 CHE Chengguo</p><p> (Northwest Electric Power Design Institute, Xian 710032, China)</p><p> Abstract: The article recounts noticing details about the applying condition and operating proce
83、ssion in practice. The above condition and operating procession is conclusion to the multilevel adding load of a kind of samples among the triaxial sheerest.</p><p> Key words: triaxial shear test; multiple
84、2stage loading; shear stress; shear strain; Mohr2Coulomb theory</p><p> Three stalks shear to slice that experiment measures the soil to shear the strength parameter, the normal regulations method needs gen
85、erally 3to4 try the kind, uses to try the kind more. But in actual engineering, adopt the original shape soil the comparison the difficulty because of some foundations or soil work buildings, or because try the asymmetry
86、 of the kind, and is hard to select by examinations 3 to4 than try the kind evenly, proceed the normal regulations like this three stalks experime</p><p> 1 Three stalks experiment inside an applicability f
87、or trying kind many class shearing slicing analysis</p><p> Normal regulations three stalks shear to slice the on trial principle according to material a stalk should dint appearance theories</p><
88、;p> Experimenting the inside keeps σ 3 constant, increase the σ continuously 1, keep to try the kind to shear to slice the breakage in α= 45°+φ2 Shearing to slice destructive standard is anti- that τ a= the τ f
89、increases freestone anticipate, hard soil, super knot soil, try kind at shear phenomenon that slice breakage hour is very clear, their shear should dint with adapts to changes relation, such as figure,1 of curve ① show,
90、namely along with shear emergency increment, shear should dint very much,</p><p> We can't get the value orders, can't keep namely the anti- that view judge soil shear the strength τ f the value. Fo
91、r this, on the engineering adoption adapt to changes breakage standard, then the soil adapts to changes to attain a certain value behind, although did not appear to shear should dint value, also think that the soil kind
92、has broken, the cowgirl adapts to changes bottom of shear should dint can make sure to shear the strength the value for the of the soil. But this breakage adapts to</p><p> 1) A kind many classes three the
93、suitable for use soil kind that stalks shears anticipate the soil, hard soil for the freestone with the super knot soil.( glue the soil generally at low round to press the knot term descend to shear to slice also shear s
94、hould the dint value exists, but belong to the category that super knot definition substantially)Because shear these soils, shear slice hour of breakage very much to adapt to changes small, as a result the ratings shears
95、 to adapt to changes after </p><p> 2) Judge soft soil, have shear slice hardening kind glue soil, because at shear slice do not appear shear slice value, can't very much to round in that class that pre
96、ss down shear the strength, if the adoption adapts to changes the certain anti- in standard in breakage shears the strength τ f, certainly will the breakage of the ratings accumulation adapts to changes big but not agree
97、 with to match the engineering request much more similar to norm value (such as above 10%,15%,20%), whereas, if sa</p><p> 2 Three stalks experiment inside an on trial verification for trying kind many clas
98、s shearing slicing</p><p> Experiment to gather to see the table with soil and projects 1</p><p> This experiment according to the GB/ T50123- 1999 《 soil works experiment the method standard
99、》 , usage Nan king soil instrument factory TSZ 30- 210 Type set type three stalk s and its TWJ- 1 The type soil work experiments the tiny machine data collects to handle system.</p><p> Typical and on trial
100、 result, such as figure,2, figure 3 show: The saturation tries the kind strength a line, such as figure,4 show:</p><p> From the figure 2, figure 3 the on trial result inside that show, explained the above
101、analysis conclusion. From the table 1 win election to take the part of experimenting the strength a line such as Figure 4 enumerate to show, for saturated powder soil of a tries kind many classes adds the experiment to a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 火山巖的成分
- 中生代火山巖
- 火山巖板生態(tài)護坡方案
- 火山巖區(qū)找礦的認識
- 與火山巖漿打交道的人
- 海南火山巖濾料BAF處理城市污水的試驗研究.pdf
- 火山巖儲層酸化體系研究.pdf
- 火山巖儲層精細描述及應用——以大港油田棗35斷塊火山巖油藏為例.pdf
- 幾種火山巖火山灰活性及反應程度的研究.pdf
- 塔里木二疊紀火山巖特點
- 松南氣田火山巖儲層三維地質建模.pdf
- 吉林氣田火山巖氣藏儲層地質研究
- 火山巖儲層壓裂施工風險預測方法分析
- 59299.火山巖造巖礦物的高溫高壓實驗研究
- 火山巖儲層壓裂施工風險預測方法研究.pdf
- 黃沙坨火山巖油藏地質及開發(fā)設計研究.pdf
- 42837.火山巖儲層地震預測技術研究
- 24431.阜新西部火山巖系瑪瑙成礦規(guī)律研究
- 54076.火山巖油藏儲層特征及有利油氣富集區(qū)域預測研究——以石西油田石炭系火山巖油藏為例
- 老廠地區(qū)火山巖的特征及其與成礦的關系.pdf
評論
0/150
提交評論