版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 附錄</b></p><p><b> 翻譯部分</b></p><p> Multi-disciplinary hypothesized prototype modeling and simulation technology</p><p> Author: PRC technica
2、l department article origin: MSC.Software</p><p> This article embarked from the current product design process to the multi-disciplinary union simulation demand, has analyzed the product coordination de
3、sign to the simulation technology three levels function demands, and drew out currently realizes the multi-disciplinary integrated simulation general method. The multi-disciplinary union simulation needs to control, the
4、organization, the finite element and so on the different simulation environment integration and the data exchange, MSC.Software</p><p> 1.multi-disciplinary unions simulations demand</p><p> I
5、t is well known, the modern product research and development flow is the multi- people team, the multi-disciplinary domain coordination design process. In product performance history, regardless of is the plan principle
6、design, the part level detailed parameter specification design, all involves to many different subsystems and the related discipline domain, these subsystems all have the oneself specific function and the unique design m
7、ethod, but between various subsystems then has the cross-co</p><p> Chart 1 the modern product process involves many subsystems and the related discipline domain</p><p> How does the effective
8、 coordinated each subsystem design team's work, let between the team achieve information sharing, helps supply each other, and guarantees the subsystem the design quality and the overall performance, the realization
9、product design true integration harmonious cooperation assimilation, thus the enhancement rated capacity, saves the design cost, reduces the development cycle, this is an extremely important question.</p><p>
10、; In order to achieve the above goal, we must satisfy following three levels the demand:</p><p> First, has various subsystems and various disciplines domain effective integration simulation tool, thus gua
11、rantees various subsystems the design standard and the reliability:</p><p> Chart 2 various disciplines domain different design tool</p><p> Second, can realize between various simulations too
12、l seamless integration and the data exchange, realizes the model conformity under the unification overhead construction;</p><p> Third, in order to can coordinate and manage each design team, as well as mas
13、s data which produces in the design process, realization resources optimization disposition, but also must have the simulation data and the flow management platform, realizes various disciplines domain true coordination
14、to imitate.</p><p> 2. multi-disciplinary coordination simulations general realization method</p><p> At present more general and the popular realization multi-disciplinary integration simulat
15、ion method mainly includes following three kinds:</p><p> 2.1 unions simulations type (Co-Simulation)</p><p> The union simulation type is at present is general, also uses most one data exchan
16、ge way, its data exchange principle like chart 3 shows, between two different simulations tools passes TCP/Way realization data exchange and transfer and so on TCP/IP.</p><p> Chart 3 union simulation -like
17、 basic principle</p><p> After between two different simulations tools through the union simulation way establishment connection, one contains the model may the result which calculates own transmit as the s
18、ystem input instruction for the model which another one establishes, this kind of instruction including the strength, the moment of force, the actuation and so on the typical signal, latter model the response quantity wh
19、ich produces in under this instruction function, like displacement, speed, acceleration and so on, </p><p> The union simulation way model application includes: Poly some dynamics and control system (for ex
20、ample vehicle control), structure and air operated load (for example aeronautical dynamics analysis), and so on. This is one kind is easiest to establish and the realization integrated simulation way, has very strong gen
21、eral, but limits lies in processes the rigid system with difficulty, takes many to the system resources, certain situation possible speeds to be slow.</p><p> 2.2 models transformations type (Model Transfe
22、r)</p><p> Model transformation -like principle like chart 4 shows. Its main principle is transforms tool model for the specific form contains the model information the data file, for another tool in model
23、transfer, thus realization information interactive. The typical data format like used in just shooting the coupling analysis the modality neutral document (*.mnf), contained in this document uses [ M ], [ K ], [ x ] the
24、resonance oscillation matrix representation information; Uses in the control mechanis</p><p> Chart 4 model transformation -like basic principle</p><p> The model transformation -like model ap
25、plication includes: The control, the battery solution and the organization integration simulation (for example airplane control surface), the finite element and the poly some organization (for example just shot coupling
26、mechanical system), and so on. This way characteristic lies in the solution speed quickly, takes few to the system resources, the stability is good, after and the model establishment is advantageous for the repetition us
27、e, but limits then li</p><p> 2.3 solutions integrations type (Solver Convergence)</p><p> The solution integration -like basic principle realizes between two different tools solution code int
28、egrations, thus realizes in an among simulation environment to another simulation tool solution transfer, like chart 5 shows.</p><p> Chart 5 solution integration -like basic principle</p><p>
29、 The solution integration -like model application includes: Has material non-linear problem the and so on the flexure large-scale structural model, has flows solid geometry non-linear problem the and so on the coupling,
30、impact large-scale structure question, and so on. This way superiority lies in may facilitate the effective utilization many kinds of disciplines domain the solution technology, is advantageous for the user to use the ex
31、isting model directly, but limits lies in the model certain f</p><p> 3. MSC.Software multi-disciplinary coordination simulation solution</p><p> In view of multi-disciplinary coordination sim
32、ulation three levels demands, MSC.Software provides current is most systematic and the integrity solution.</p><p> First, MSC.Software provides integrated VPD modeling simulation environment MSC.SimOffice.
33、MSC.SimOffice contains the one whole set comprehensive VPD tool to use in simulation system each kind of performance, thus highly effective establishment various subsystems model, appraisal system performance.</p>
34、<p> Chart 6 integrates VPD simulation environment MSC.SimOffice</p><p> Next, MSC.Between the SimOffice various members has the seamless integrated ability, may realize the data exchange and the mod
35、el conformity, Establishment integrity integrated hypothesized prototype; MSC.SimOffice has the glorious development history, its members all are respective domain reside in the leading status the simulation tool, passed
36、 the massive engineering project examination, the knowledge and the experience unceasing accumulation, has the greatly strengthened reliability and the st</p><p> Chart 7 MSC.SimOffice realizes the complete
37、 function hypothesized prototype</p><p> Once more, MSC.SimManager is the formidable simulation flow and the data management platform, provides the coordination and the management for the enterprise designs
38、 the personnel, the simulation tool, the model data unified overhead construction, the realization resources optimization disposes and combines, enhances the product development efficiency.</p><p> 3.1 MSC.
39、SimOffice integration simulation way</p><p> According to realizes the integrated simulation three general methods respective superiority and the characteristic, unifies various simulations tool own charact
40、eristic and the use, MSC.Between SimOffice member through different way realization conformity.</p><p> 3.1.1 MSC.EASY5 and MSC.ADAMS integration way</p><p> At present MSC.EASY5 and MSC.ADAMS
41、 two between integration more and more close, the integrated way more and more is also rich. MSC.EASY5 and MSC.ADAMS may through the union simulation type, the model transformation type and the solution integration type
42、three ways carries on the coordination simulation.</p><p> * Union simulation type</p><p> - By MSC.EASY5 and MSC.ADAMS solution solution respective model;</p><p> - Step-by-s
43、teps the good data communication in the hypothesis time.</p><p> * The model transformation type (control system inducts)</p><p> -MSC.EASY5 establishes the control and the multi-disciplinary
44、system induct MSC.ADAMS;</p><p> - MSC. The EASY5 model took a set of GSE equation joins to MSC.ADAMS (dll dynamic link storehouse form introduction);</p><p> - MSC.ADAMS solution integral com
45、putation all models;</p><p> - In MSC. In ADAMS carries on the appraisal to the control system performance, selects this method, may study the entire model in the control system initialization parameter sit
46、uation the performance, carries on the unification the experimental design and the parameter optimization.</p><p> * Solution integration type</p><p> - MSC.ADAMS C++ solution integration in M
47、SC. In EASY5, MSC. The EASY5 user may transfer MSC. Directly The ADAMS C++ solution calculates MSC.EASY5 model;</p><p> - In MSC. In EASY5 modeling and simulation;</p><p> - MSC.EASY5 can tran
48、sfer directly in the backstage and move MSC.ADAMS C++ solution;</p><p> - When simulation conclusion can automatically open MSC. The ADAMS post-processing examines the simulation result.</p><p>
49、; Chart 8 MSC.ADAMS and MSC.EASY5 realizes the integration of machinery simulation</p><p> 3.1.2 MSC.ADAMS, MSC.Nastran, MSC.Fatigue integration way</p><p> These three between mainly carries
50、 on the integration through the model transformation way.</p><p> * By MSC. Nastran carries on the finite element analysis to the part, the production includes the modality information the mnf document;<
51、/p><p> * Inducts the mnf document MSC. In ADAMS, foundation hard and soft coupling model;</p><p> * By MSC.ADAMS carries on dynamics analysis to the organization;</p><p> * MSC. Th
52、e ADAMS analysis obtains the load and the displacement equilateral condition may change over to MSC. Nastran carries on detailed analysis and so on stress, vibration, noise;</p><p> * MSC. The ADAMS analysi
53、s obtains the load time course information may changes over to MSC. through DAC or the RPC III form document In Fatigue carries on the weary analysis.</p><p> Chart 9 MSC.ADAMS and MSC.Nastran integration&l
54、t;/p><p> 3.1.3 MSC.Nastran, MSC.Marc, MSC.Dytran integration way</p><p> These three mainly through solution integration way realization conformity.</p><p> * MSC.Nastran + hides t
55、ype non-linear SOL600 (MSC.Marc);</p><p> * MSC.Nastran + explicit non-linear SOL700 (LS-DYNA);</p><p> * Processes under the overhead construction in unified around to carry on the computatio
56、n solution;</p><p> * In MSC.In Nastran integrated MSC. completely Marc and LS-DYNA non-linear function;</p><p> * Enormously expanded MSC.Nastran simulation scope and application domain.</
57、p><p> Chart 10 MSC.Nastran explicit non-linear solution SOL700</p><p> 3.1.4 MSC.EASY5 and MSC.Nastran direct integration</p><p> At present MSC.EASY5 and MSC.Nastran may through t
58、he model transformation way realization direct integration, thus permits in MSC.In EASY5 introduces the elastomer structure data, the solution control and the structure coupling question.</p><p> Chart 11 M
59、SC.EASY5 and MSC.Nastran direct integration</p><p> 3.2 MSC.SimOffice coordination simulation model application way</p><p> By front article obviously, MSC.Between the SimOffice member may thr
60、ough the good integrated ability realization complex product integrated development. Contained the control, the structure, the organization movement as well as the weary analysis in and so on in the multi-disciplinary mu
61、lti- subsystems product development flow, we might pass MSC. in ahead of time the stage The EASY5 establishment including the control system and the multi-disciplinary dynamic system principle model, passes MSC.N</p&g
62、t;<p> Chart 12 MSC.SimOffice realization product integrity development flow</p><p> 3.3 MSC.SimOffice future overhead construction</p><p> At present MSC.Software Corporation positive
63、 development work, MSC.The SimOffice various members transplant and the conformity to the unified overhead construction in, realize the more convenient coordination simulation under the identical contact surface environm
64、ent.</p><p> Chart 13 MSC.SimOffice future overhead construction</p><p> MSC.SimManager establishment coordination simulation platform</p><p> In the multi- teams, the multi- sub
65、systems, in the multi-disciplinary domain product performance history, only has various subsystems and various disciplines domain development kit, and realized each development kit integration still not to be able to ach
66、ieve the complete coordination design, because in the performance history, involved to the different development personnel, the massive data and the information, as well as various subsystems different design flow. For t
67、he effective administrati</p><p> MSC.SimManager is the current most formidable simulation data and the flow management system management system, for based on the IE gateway type management system, helps to
68、 manage the multi-disciplinary union simulation the multitudinous simulation tool, the flow and the data, carries on each kind of analysis under the unified platform, enterprise's analysis staff and the resources opt
69、imization disposition, establishes the true coordination simulation platform.</p><p> Chart 14 MSC.SimManager establishment coordination simulation platform</p><p> 4. multi-disciplinary hypot
70、hesized prototypes development example</p><p> Below the example produces in the development flight control system aileron hydraulic pressure does moves the subsystem in the process, MSC. How joint operatio
71、n is the SimOffice member, completes the overall system the integrated development duty. In the performance history, various simulations tool, the data and the development flow management passes MSC.SimManager realizatio
72、n.</p><p> The traditional flight control system development mainly relies on "the airplane" the experiment, this experiment usually applies in the system synthesis as well as the function test. O
73、n must carry on the massive different types in "the mockup" the physical testing, by guarantees the design the accuracy. If considered merely the airplane aileron operates the response to the pilot the speech,
74、"airplane" experiment quite ideal.</p><p> But "the airplane" experiments the biggest shortcoming to lie in, it the airplane consideration is the rigid body, moreover cannot include the
75、aerodynamics the factor, the integrity flight load (is merely a load) as well as the elastomer influence. These factors regarding the design influence are quite big in fact.</p><p> Moreover, if total depen
76、dence "airplane" experiment, then brings the development cycle and the cost all are cannot be accepted.</p><p> With the aid of in MSC.The Software VPD technology, establishes 功能化 the numeral airp
77、lane, may in the simulation above consider completely the key aspect influence, at the same time may reduce the physical prototype the trial manufacturing and the experiment, saves the development cost, reduces the devel
78、opment cycle.</p><p> Chart 15 MSC.SimOffice realizes the complete system simulation</p><p> Complete development flow as follows:</p><p> Chart 16 integrity development flow<
79、/p><p> 多學(xué)科系統(tǒng)級虛擬樣機建模與仿真技術(shù)</p><p> 作者:PRC技術(shù)部 文章來源:MSC.Software</p><p> 本文從當(dāng)前產(chǎn)品設(shè)計過程對多學(xué)科聯(lián)合仿真的需求出發(fā),分析了產(chǎn)品協(xié)同設(shè)計對仿真技術(shù)三個層次的功能需求,并引出當(dāng)前實現(xiàn)多學(xué)科集成仿真的一般方法。多學(xué)科聯(lián)合仿真需要控制、機構(gòu)、有限元等不同仿真環(huán)境的集成和數(shù)據(jù)交換,MSC.Soft
80、ware提供最為系統(tǒng)和完整的多學(xué)科協(xié)同仿真開發(fā)環(huán)境,本文詳細(xì)介紹了MSC.Software多學(xué)科系統(tǒng)級虛擬樣機建模和仿真的解決方案,并給出了具體的實例。</p><p> 1.多學(xué)科聯(lián)合仿真的需求 眾所周知,現(xiàn)代產(chǎn)品的研發(fā)流程是多人團(tuán)隊、多學(xué)科領(lǐng)域的協(xié)同設(shè)計過程。在產(chǎn)品開發(fā)過程中,無論是系統(tǒng)級的方案原理設(shè)計,還是部件級的詳細(xì)參數(shù)規(guī)格設(shè)計,都涉及到多個不同的子系統(tǒng)和相關(guān)學(xué)科領(lǐng)域,這些子系統(tǒng)都有自己特定的功
81、能和獨特的設(shè)計方法,而各子系統(tǒng)之間則具有交互耦合作用,共同組成完整的功能系統(tǒng)。</p><p> 圖1 現(xiàn)代產(chǎn)品過程涉及多個子系統(tǒng)和相關(guān)學(xué)科領(lǐng)域</p><p> 如何有效的協(xié)調(diào)各個子系統(tǒng)設(shè)計團(tuán)隊的工作,讓團(tuán)隊之間達(dá)到信息共享、互通有無,并保證子系統(tǒng)的設(shè)計質(zhì)量和整體性能,實現(xiàn)產(chǎn)品設(shè)計真正的一體化和協(xié)同化,從而提高設(shè)計效率,節(jié)省設(shè)計成本,縮短開發(fā)周期,這是一個非常重要的問題。</
82、p><p> 為了達(dá)到上述目標(biāo),我們必須滿足以下三個層次的需求:</p><p> 第一,具備各子系統(tǒng)和各學(xué)科領(lǐng)域有效的集成仿真工具,從而保證各子系統(tǒng)的設(shè)計水準(zhǔn)和可靠性;</p><p> 圖2 各學(xué)科領(lǐng)域的不同設(shè)計工具</p><p> 第二,能夠?qū)崿F(xiàn)各仿真工具之間的無縫集成和數(shù)據(jù)交換,在統(tǒng)一架構(gòu)下實現(xiàn)模型整合;</p>
83、<p> 第三,為了能夠協(xié)調(diào)和管理各設(shè)計團(tuán)隊,以及在設(shè)計過程中產(chǎn)生的大量數(shù)據(jù),實現(xiàn)資源優(yōu)化配置,還必須具有仿真數(shù)據(jù)和流程的管理平臺,實現(xiàn)各學(xué)科領(lǐng)域的真正協(xié)同仿真。</p><p> 2.多學(xué)科協(xié)同仿真的一般實現(xiàn)方法 目前較為通用和流行的實現(xiàn)多學(xué)科集成仿真的方法主要包括以下三種:</p><p> 2.1 聯(lián)合仿真式(Co-Simulation) 聯(lián)合仿
84、真式是目前較為通用,也是使用最多的一種數(shù)據(jù)交換方式,其數(shù)據(jù)交換原理如圖3所示,兩個不同仿真工具之間通過TCP/IP等方式實現(xiàn)數(shù)據(jù)交換和調(diào)用。</p><p> 圖3 聯(lián)合仿真式的基本原理</p><p> 當(dāng)兩個不同仿真工具之間通過聯(lián)合仿真方式建立連接后,其中一者所包含的模型可以將自己計算的結(jié)果作為系統(tǒng)輸入指令傳遞給另一者所建立的模型,這種指令包括力、力矩、驅(qū)動等典型信號,后者的模型
85、在該指令的作用下所產(chǎn)生的響應(yīng)量,如位移、速度、加速度等,又可以反饋給前者的模型,這樣,模型信息和仿真數(shù)據(jù)就可以在兩者之間雙向傳遞。</p><p> 聯(lián)合仿真方式的典型應(yīng)用有:多體動力學(xué)與控制系統(tǒng)(如車輛控制)、結(jié)構(gòu)與氣動載荷(如飛行動力學(xué)分析),等等。這是一種最為容易建立和實現(xiàn)的集成仿真方式,具有很強的普適性,但局限在于難以處理剛性系統(tǒng),對系統(tǒng)資源占用較多,某些情況可能速度較慢。</p><
86、;p> 2.2 模型轉(zhuǎn)換式(Model Transfer) 模型轉(zhuǎn)換式的原理如圖4所示。其主要原理是將其中一個工具的模型轉(zhuǎn)化為特定格式的包含模型信息的數(shù)據(jù)文件,供另一個工具中的模型調(diào)用,從而實現(xiàn)信息交互。典型的數(shù)據(jù)格式如用于剛彈耦合分析的模態(tài)中性文件(mnf),在該文件中包含采用[M]、[K]、[x]和振型矩陣表示的彈性體信息;用于控制機構(gòu)一體化仿真以及其它仿真的動態(tài)鏈接庫文件(dll),該文件中包含采用變量表示的函數(shù)信
87、息。 </p><p> 圖4 模型轉(zhuǎn)化式的基本原理</p><p> 模型轉(zhuǎn)化式的典型應(yīng)用有:控制、電液與機構(gòu)一體化仿真(如飛機操縱面),有限元與多體機構(gòu)(如剛彈耦合機械系統(tǒng)),等等。這種方式的特點在于求解速度快,對系統(tǒng)資源占用較少,穩(wěn)定性好,并且模型建立后便于重復(fù)使用,而局限則在于需要定義特定數(shù)據(jù)格式的文件,通用性稍差。</p><p> 2.3 求解器
88、集成式(Solver Convergence) 求解器集成式的基本原理是實現(xiàn)兩個不同工具之間的求解器代碼集成,從而實現(xiàn)在其中一個仿真環(huán)境中對另一個仿真工具的求解器調(diào)用,如圖5所示。</p><p> 圖5 求解器集成式的基本原理</p><p> 求解器集成式的典型應(yīng)用有:帶有屈曲等材料非線性問題的大型結(jié)構(gòu)模型,帶有流固耦合、沖擊等幾何非線性問題的大型結(jié)構(gòu)問題,等等。這種方式
89、的優(yōu)勢在于可以方便有效的運用多種學(xué)科領(lǐng)域的求解技術(shù),便于用戶直接使用現(xiàn)有模型,而局限在于模型中的某些因素如單元類型、函數(shù)形式等某些情況下需要重新定義,同時軟件的開發(fā)和升級周期較長。</p><p> 3.MSC.Software多學(xué)科協(xié)同仿真解決方案 針對多學(xué)科協(xié)同仿真三個層次的需求,MSC.Software提供當(dāng)前最為系統(tǒng)和完整的解決方案。</p><p> 首先,MSC.
90、Software提供集成的VPD建模仿真環(huán)境MSC.SimOffice。MSC.SimOffice包含一整套全面的VPD工具用于仿真系統(tǒng)的各種性能,從而高效的建立各子系統(tǒng)的模型,評價系統(tǒng)性能。</p><p> 圖6 集成VPD仿真環(huán)境MSC.SimOffice</p><p> 其次,MSC.SimOffice各成員之間均具有無縫集成能力,可以實現(xiàn)數(shù)據(jù)交換和模型整合,建立完整的一體化
91、虛擬樣機;MSC.SimOffice具有悠久的開發(fā)歷史,其成員都是各自領(lǐng)域居于領(lǐng)先地位的仿真工具,通過了大量工程項目的檢驗,知識和經(jīng)驗的不斷積累,具有極強的可靠性與穩(wěn)定性。目前MSC.SimOffice各成員之間可以方便的通過不同方式實現(xiàn)模型數(shù)據(jù)交互、求解器整合和計算過程協(xié)同,同時MSC正在積極的開展工作,將MSC.SimOffice各成員移植和整合到統(tǒng)一的架構(gòu)之下,以便用戶可以在統(tǒng)一的界面環(huán)境下完成所有分析工作。</p>
92、<p> 圖7 MSC.SimOffice實現(xiàn)完整功能虛擬樣機</p><p> 再次,MSC.SimManager是強大的仿真流程與數(shù)據(jù)管理平臺,為企業(yè)提供協(xié)調(diào)和管理設(shè)計人員、仿真工具,模型數(shù)據(jù)的統(tǒng)一架構(gòu),實現(xiàn)資源的優(yōu)化配置和組合,提高產(chǎn)品開發(fā)效率。</p><p> 3.1 MSC.SimOffice集成仿真方式 根據(jù)實現(xiàn)集成仿真的三種通用方法各自的優(yōu)勢和特
93、點,結(jié)合各仿真工具自身的特點和用途,MSC.SimOffice成員間通過不同的方式實現(xiàn)整合。</p><p> 3.1.1 MSC.EASY5與MSC.ADAMS集成方式 目前MSC.EASY5與MSC.ADAMS兩者之間的集成越來越緊密,集成的方式也越來越豐富。MSC.EASY5與MSC.ADAMS可以通過聯(lián)合仿真式、模型轉(zhuǎn)換式和求解器集成式三種方式進(jìn)行協(xié)同仿真。</p><p&g
94、t; * 聯(lián)合仿真式 -由MSC.EASY5和MSC.ADAMS求解器求解各自的模型; -在設(shè)定時間步進(jìn)行數(shù)據(jù)通信。</p><p> * 模型轉(zhuǎn)換式(控制系統(tǒng)導(dǎo)入) -將MSC.EASY5所建立的控制與多學(xué)科系統(tǒng)導(dǎo)入MSC.ADAMS; -MSC.EASY5模型作為一套GSE方程加入到MSC.ADAMS(dll動態(tài)鏈接庫形式引入); -MSC.ADAMS求解器積分計算
95、所有的模型; -在MSC.ADAMS中對控制系統(tǒng)性能進(jìn)行評估,采用此種方式,可以在控制系統(tǒng)預(yù)置參數(shù)的情況下研究整個模型的性能,進(jìn)行統(tǒng)一的試驗設(shè)計和參數(shù)優(yōu)化。</p><p> * 求解器集成式 -MSC.ADAMS C++求解器集成于MSC.EASY5中,MSC.EASY5用戶可以直接調(diào)用MSC.ADAMS的C++求解器來計算MSC.EASY5的模型; -在MSC.EASY5中建模并仿真
96、; -MSC.EASY5會在后臺直接調(diào)用和運行MSC.ADAMS C++求解器; -仿真結(jié)束時會自動打開MSC.ADAMS的后處理器來查看仿真結(jié)果。</p><p> 圖8 MSC.ADAMS與MSC.EASY5實現(xiàn)機電一體化仿真</p><p> 3.1.2 MSC.ADAMS、MSC.Nastran、MSC.Fatigue集成方式 這三者之間主要通過模型轉(zhuǎn)換
97、方式進(jìn)行集成。 * 由MSC.Nastran對部件進(jìn)行有限元分析,生成含有模態(tài)信息的mnf文件; * 將mnf文件導(dǎo)入MSC.ADAMS中,創(chuàng)建剛?cè)狁詈夏P停?* 由MSC.ADAMS對機構(gòu)進(jìn)行動力學(xué)分析; * MSC.ADAMS分析得到的載荷和位移等邊界條件可重新轉(zhuǎn)入MSC.Nastran進(jìn)行詳細(xì)的應(yīng)力、振動、噪音等分析; * MSC.ADAMS分析得到的載荷時間歷程信息可通過DAC或RPC I
98、II格式文件轉(zhuǎn)入MSC.Fatigue中進(jìn)行疲勞分析。</p><p> 圖9 MSC.ADAMS與MSC.Nastran的集成</p><p> 3.1.3 MSC.Nastran、MSC.Marc、MSC.Dytran集成方式 這三者主要通過求解器集成方式實現(xiàn)整合。 * MSC.Nastran + 隱式非線性SOL600 (MSC.Marc); * MSC.
99、Nastran + 顯式非線性SOL700 (LS-DYNA); * 在統(tǒng)一的前后處理架構(gòu)之下進(jìn)行計算求解; * 在MSC.Nastran中完全集成了MSC.Marc和LS-DYNA的非線性功能; * 極大地擴(kuò)展了MSC.Nastran的仿真范圍和應(yīng)用領(lǐng)域。</p><p> 圖10 MSC.Nastran顯式非線性求解器SOL700</p><p> 3.1.
100、4 MSC.EASY5與MSC.Nastran的直接集成 目前MSC.EASY5與MSC.Nastran可以通過模型轉(zhuǎn)換方式實現(xiàn)直接集成,從而允許在MSC.EASY5中引入彈性體結(jié)構(gòu)數(shù)據(jù),解決控制與結(jié)構(gòu)的耦合問題。</p><p> 圖11 MSC.EASY5與MSC.Nastran的直接集成</p><p> 3.2 MSC.SimOffice協(xié)同仿真的典型應(yīng)用方式
101、 由前文可見,MSC.SimOffice成員間可以通過良好的集成能力實現(xiàn)復(fù)雜產(chǎn)品的一體化開發(fā)。在一個包含控制、結(jié)構(gòu)、機構(gòu)運動以及疲勞分析等多學(xué)科多子系統(tǒng)的產(chǎn)品開發(fā)流程中,我們可以在先期階段通過MSC.EASY5建立包括控制系統(tǒng)和多學(xué)科動態(tài)系統(tǒng)在內(nèi)的系統(tǒng)原理模型,通過MSC.Nastran/Marc/Dytran對部件進(jìn)行有限元分析,然后將MSC.EASY5建立的控制系統(tǒng)模型和MSC.Nastran分析的彈性體模型導(dǎo)入MSC.ADAMS中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機床傳動系統(tǒng)虛擬樣機仿真技術(shù)的研究.pdf
- 基于多學(xué)科級虛擬樣機的粘著控制方法仿真與試驗研究.pdf
- 引信虛擬樣機協(xié)同仿真技術(shù)研究.pdf
- 專用鉆床傳動系統(tǒng)虛擬樣機仿真技術(shù)的研究.pdf
- 汽車?yán)^電器虛擬樣機仿真技術(shù)研究.pdf
- 復(fù)雜產(chǎn)品的虛擬樣機仿真技術(shù)研究.pdf
- 機電一體化產(chǎn)品虛擬樣機協(xié)同建模與仿真技術(shù)研究.pdf
- 多學(xué)科虛擬樣機工具軟件集成技術(shù)研究與實現(xiàn).pdf
- 航空機箱多學(xué)科綜合性能仿真技術(shù)研究.pdf
- 軸向柱塞泵虛擬樣機仿真技術(shù)研究.pdf
- 微小衛(wèi)星多學(xué)科建模與仿真方法研究.pdf
- 乳化液泵虛擬樣機仿真技術(shù)應(yīng)用研究.pdf
- DF900型架橋機虛擬樣機建模及動態(tài)仿真技術(shù)的研究.pdf
- 清選裝置虛擬樣機建模與性能仿真.pdf
- 基于虛擬樣機的蝸桿傳動機構(gòu)3D建模與動力學(xué)仿真技術(shù).pdf
- 液壓支架虛擬樣機協(xié)同建模與仿真分析.pdf
- 基于虛擬樣機技術(shù)的采煤機建模與仿真研究.pdf
- QREV電動轎車虛擬樣機建模與動態(tài)仿真.pdf
- 虛擬樣機的仿真過程及其建模技術(shù)研究.pdf
- 基于虛擬樣機技術(shù)的采煤機自動調(diào)高系統(tǒng)的建模與仿真.pdf
評論
0/150
提交評論