機(jī)械類畢業(yè)設(shè)計(jì)外文翻譯--龍門式起重機(jī)金屬材料的疲勞強(qiáng)度預(yù)測(cè)_第1頁
已閱讀1頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  英文文章:</b></p><p>  Fatigue life prediction of the metalwork of </p><p>  a travelling gantry crane</p><p>  V.A. Kopnov</p><p><b>  Abst

2、ract</b></p><p>  Intrinsic fatigue curves are applied to a fatigue life prediction problem of the metalwork of a traveling gantry crane. A crane, used in the forest industry, was studied in working co

3、nditions at a log yard, an strain measurements were made. For the calculations of the number of loading cycles, the rain flow cycle counting technique is used. The operations of a sample of such cranes were observed for

4、a year for the average number of operation cycles to be obtained. The fatigue failure analysis ha</p><p>  Key words: Cranes; Fatigue assessment; Strain gauging</p><p>  1. Introduction</p>

5、;<p>  Fatigue failures of elements of the metalwork of traveling gantry cranes LT62B are observed frequently in operation. Failures as fatigue cracks initiate and propagate in welded joints of the crane bridge an

6、d supports in three-four years. Such cranes are used in the forest industry at log yards for transferring full-length and sawn logs to road trains, having a load-fitting capacity of 32 tons. More than 1000 cranes of this

7、 type work at the enterprises of the Russian forest industry. The problem </p><p>  2. Analysis of the crane operation</p><p>  For the analysis, a traveling gantry crane LT62B installed at log

8、yard in the Yekaterinburg region was chosen. The crane serves two saw mills, creates a log store, and transfers logs to or out of road trains. A road passes along the log store. The saw mills are installed so that the re

9、ception sites are under the crane span. A schematic view of the crane is shown in Fig. 1.</p><p>  1350-6307/99/$一see front matter 1999 Elsevier Science Ltd. All rights reserved.</p><p>  PII:

10、S 1 3 5 0一6307(98) 00041一7</p><p>  A series of assumptions may be made after examining the work of cranes:</p><p>  ·if the monthly removal of logs from the forest exceeds the processing r

11、ate, i.e. there is a creation of a log store, the crane expects work, being above the centre of a formed pile with the grab lowered on the pile stack;</p><p>  ·when processing exceeds the log removal f

12、rom the forest, the crane expects work above an operational pile close to the saw mill with the grab lowered on the pile;</p><p>  ·the store of logs varies; the height of the piles is considered to be

13、a maximum;</p><p>  ·the store variation takes place from the side opposite to the saw mill;</p><p>  ·the total volume of a processed load is on the average k=1.4 times more than the

14、total volume of removal because of additional transfers.</p><p>  2.1. Removal intensity</p><p>  It is known that the removal intensity for one year is irregular and cannot be considered as a

15、 stationary process. The study of the character of non-stationary flow of road trains at 23 enterprises Sverdlesprom for five years has shown that the monthly removal intensity even for one enterprise essentially varies

16、from year to year. This is explained by the complex of various systematic and random effects which exert an influence on removal: weather conditions, conditions of roads and lorry fleet,</p><p>  Therefore,

17、the less possibility of removing wood in the season between spring and autumn, the more intensively the wood removal should be performed in winter. While in winter the removal intensity exceeds the processing considerabl

18、y, in summer, in most cases, the more full-length logs are processed than are taken out.</p><p>  From the analysis of 118 realizations of removal values observed for one year, it is possible to evaluate the

19、 relative removal intensity g(t) as percentages of the annual load turnover. The removal data fisted in Table 1 is considered as expected values for any crane, which can be applied to the estimation of fatigue life, and,

20、 particularly, for an inspected crane with which strain measurement was carried out (see later). It would be possible for each crane to take advantage of its load turnover</p><p>  The distribution of remova

21、l value Q(t) per month performed by the relative intensity q(t) is written as</p><p>  where Q is the annual load turnover of a log store, A is the maximal designed store of logs in percent of Q. Substitutin

22、g the value Q, which for the inspected crane equals 400,000 m3 per year, and A=10%, the volumes of loads transferred by the crane are obtained, which are listed in Table 2, with the total volume being 560,000 m3 for one

23、year using K,.</p><p>  2.2. Number of loading blocks</p><p>  The set of operations such as clamping, hoisting, transferring, lowering, and getting rid of a load can be considered as one operat

24、ion cycle (loading block) of the crane. As a result to investigations, the operation time of a cycle can be modeled by the normal variable with mean equal to 11.5 min and standard deviation to 1.5 min. unfortunately, thi

25、s characteristic cannot be simply used for the definition of the number of operation cycles for any work period as the local processing is extremely </p><p>  The volume of a unit load can be modeled by a ra

26、ndom variable with a distribution function(t) having mean22 m3 and standard deviation 6;一3 m3, with the nominal volume of one pack being 25 m3. Then, knowing the total volume of a processed load for a month or year, it i

27、s possible to determine distribution parameters of the number of operation cycles for these periods to take advantage of the methods of renewal theory [1].</p><p>  According to these methods, a random renew

28、al process as shown in Fig. 2 is considered, where the random volume of loads forms a flow of renewals: </p><p>  In renewal theory, realizations of random:,,,having a distribution function F(t), are unders

29、toodas moments of recovery of failed units or request receipts. The value of a processed load:,,after}th operation is adopted here as the renewal moment.</p><p>  Let F(t)=P﹛<t﹜. The function F(t) is define

30、d recurrently,</p><p>  Let v(t) be the number of operation cycles for a transferred volume t. In practice, the total volume of a transferred load is essentially greater than a unit load, and it is useful t

31、herefore totake advantage of asymptotic properties of the renewal process. As follows from an appropriate</p><p>  limit renewal theorem, the random number of cycles v required to transfer the large volume t

32、 hasthe normal distribution asymptotically with mean and variance.</p><p>  without dependence on the form of the distribution function月t) of a unit load (the restriction is imposed only on nonlattice of the

33、 distribution).</p><p>  Equation (4) using Table 2 for each averaged operation month,function of number of load cycles with parameters m,. and 6,., which normal distribution in Table 3. Figure 3 shows the a

34、verage numbers of cycles with 95 % confidence intervals. The values of these parameters</p><p>  for a year are accordingly 12,719 and 420 cycles.</p><p>  3. Strain measurements</p><

35、p>  In order to reveal the most loaded elements of the metalwork and to determine a range of stresses, static strain measurements were carried out beforehand. Vertical loading was applied by hoisting measured loads, a

36、nd skew loading was formed with a tractor winch equipped with a dynamometer. The allocation schemes of the bonded strain gauges are shown in Figs 4 and 5. As was expected, the largest tension stresses in the bridge take

37、place in the bottom chord of the truss (gauge 11-45 MPa). The top c</p><p>  being less compressed than the top one (gauge 17-75 and 10-20 MPa). The other elements of the bridge are less loaded with stresses

38、 not exceeding the absolute value 45 MPa. The elements connecting the support with the bridge of the crane are loaded also irregularly. The largest compression stresses take place in the carrying angles of the interior p

39、anel; the maximum stresses reach h0 MPa (gauges 8 and 9). The largest tension stresses in the diaphragms and angles of the exterior panel reach 45 MPa</p><p>  The elements of the crane bridge are subjected,

40、 in genera maximum stresses and respond weakly to skew loads. The suhand, are subjected mainly to skew loads.1, to vertical loads pports of the crane gmmg rise to on the other</p><p>  The loading of the met

41、alwork of such a crane, transferring full-length logs, differs from that of a crane used for general purposes. At first, it involves the load compliance of log packs because of progressive detachment from the base. There

42、fore, the loading increases rather slowly and smoothly.The second characteristic property is the low probability of hoisting with picking up. This is conditioned by the presence of the grab, which means that the fall of

43、the rope from the spreader block is no</p><p>  When a high acceleration with the greatest possible clearance in the joint between spreader andgrab takes place, the tension of the ropes happens 1 s after swi

44、tching the electric drive on, the clearance in the joint taking up. The revolutions of the electric motors reach the nominal value in O.}r0.7 s. The detachment of a load from the base, from the moment of switching electr

45、ic motors on to the moment of full pull in the ropes takes 3-3.5 s, the tensions in ropes increasing smoothly to maximum.</p><p>  When a rigid load is lifted, the accelerated velocity of loading in the rope

46、 hanger and metalwork is practically the same as in case of fast hoisting of a log pack. The metalwork oscillations are characterized by two harmonic processes with periods 0.6 and 2 s, which have been obtained from spec

47、tral analysis. The worst case of loading ensues from summation of loading amplitudes so that the maximum excess of dynamic loading above static can be 13-14%.Braking a load, when it is lowered, induces si</p><

48、p>  4. Fatigue loading analysis</p><p>  Strain measurement at test points, disposed as shown in Figs 4 and 5, was carried out during the work of the crane and a representative number of stress oscillogra

49、ms was obtained. Since a common operation cycle duration of the crane has a sufficient scatter with average value } 11.5min, to reduce these oscillograms uniformly a filtration was implemented to these signals, and all r

50、epeated values, i.e. while the construction was not subjected to dynamic loading and only static loading occurred, we</p><p>  Fig. 6 where the interior sequence of loading for an operation cycle is visible.

51、 At first, stresses</p><p>  increase to maximum values when a load is hoisted. After that a load is transferred to the necessary location and stresses oscillate due to the irregular crane movement on rails

52、and over rail joints resulting mostly in skew loads. The lowering of the load causes the decrease of loading and forms half of a basic loading cycle.</p><p>  4.1. Analysis of loading process amplitudes</

53、p><p>  Two terms now should be separated: loading cycle and loading block. The first denotes one distinct oscillation of stresses (closed loop), and the second is for the set of loading cycles during an operat

54、ion cycle. The rain flow cycle counting method given in Ref. [2] was taken advantage of to carry out the fatigue hysteretic loop analysis for the three weakest elements: (1) angle of the bottom chord(gauge 11), (2) I-bea

55、m of the top chord (gauge 17), (3) angle of the support (gauge 8). Statistical</p><p>  4.2. Numbers of loading cycles</p><p>  During the rain flow cycle counting procedure, the calculation of

56、number of loading cycles for the loading block was also carried out. While processing the oscillograms of one type, a sample number of loading cycles for one block is obtained consisting of integers with minimum and maxi

57、mum observed values: 24 and 46. The random number of loading cycles vibe can be described</p><p>  by the Poisson distribution with parameter =34.</p><p>  Average numbers of loading blocks via

58、months were obtained earlier, so it is possible to find the appropriate characteristics not only for loading blocks per month, but also for the total number of loading cycles per month or year if the central limit theore

59、m is taken advantage of. Firstly, it is known from probability theory that the addition of k independent Poisson variables gives also a random variable with the Poisson distribution with parameter k},. On the other hand,

60、 the Poisson distribut</p><p>  5. Stress concentration factors and element endurance</p><p>  The elements of the crane are jointed by semi-automatic gas welding without preliminary edge prepar

61、ation and consequent machining. For the inspected elements 1 and 3 having circumferential and edge welds of angles with gusset plates, the effective stress concentration factor for fatigue is given by calculation methods

62、 [3], kf=2.}r2.9, coinciding with estimates given in the current Russian norm for fatigue of welded elements [4], kf=2.9.</p><p>  The elements of the crane metalwork are made of alloyed steel 09G2S having a

63、n endurance limit of 120 MPa and a yield strength of 350 MPa. Then the average values of the endurance limits of the inspected elements 1 and 3 are ES一l=41 MPa. The variation coefficient is taken as 0.1, and the correspo

64、nding standard deviation is 6S-、一4.1 MPa.</p><p>  The inspected element 2 is an I-beam pierced by holes for attaching rails to the top flange. The rather large local stresses caused by local bending also pr

65、omote fatigue damage accumulation. According to tables from [4], the effective stress concentration factor is accepted as kf=1.8, which gives an average value of the endurance limit as ES一l=h7 Map. Using the same variati

66、on coiffing dent th e stand arid d emit ion is =6.7 MPa.</p><p>  An average S-N curve, recommended in [4], has the form:</p><p>  with the inflexion point No=5·106 and the slope m=4.5 fo

67、r elements 1 and 3 and m=5.5 for element 2.</p><p>  The possible values of the element endurance limits presented above overlap the ranges of load amplitude with nonzero probability, which means that these

68、elements are subjected to fatigue damage accumulation. Then it is possible to conclude that fatigue calculations for the elements are necessary as well as fatigue fife prediction.</p><p>  6. Life prediction

69、</p><p>  The study has that some elements of the metalwork are subject to fatigue damage accumulation.To predict fives we shall take advantage of intrinsic fatigue curves, which are detailed in [5]and [6].&

70、lt;/p><p>  Following the theory of intrinsic fatigue curves, we get lognormal life distribution densities for the inspected elements. The fife averages and standard deviations are fisted in Table 5. The lognor

71、mal fife distribution densities are shown in Fig. 7. It is seen from this table that the least fife is for element 3. Recollecting that an average number of load blocks for a year is equal to 12,719, it is clear that the

72、 average service fife of the crane before fatigue cracks appear in the welded elem</p><p>  7. Conclusions</p><p>  The analysis of the crane loading has shown that some elements of the metalwor

73、k are subjectedto large dynamic loads, which causes fatigue damage accumulation followed by fatigue failures.The procedure of fatigue hfe prediction proposed in this paper involves tour parts:</p><p>  (1) A

74、nalysis of the operation in practice and determination of the loading blocks for some period.</p><p>  (2) Rainflow cycle counting techniques for the calculation of loading cycles for a period of standard o

75、peration.</p><p>  (3) Selection of appropriate fatigue data for material.</p><p>  (4) Fatigue fife calculations using the intrinsic fatigue curves approach.</p><p>  The results o

76、f this investigation have been confirmed by the cases observed in practice, and the manufacturers have taken a decision about strengthening the fixed elements to extend their fatigue lives.</p><p><b> 

77、 中文翻譯</b></p><p>  龍門式起重機(jī)金屬材料的疲勞強(qiáng)度預(yù)測(cè)</p><p><b>  v.a.科普諾夫</b></p><p><b>  摘要</b></p><p>  內(nèi)在的疲勞曲線應(yīng)用到龍門式起重機(jī)金屬材料的疲勞壽命預(yù)測(cè)問題。起重機(jī),用于在森林工業(yè)中,在伐木林場(chǎng)

78、對(duì)各種不同的工作條件進(jìn)行研究,并且做出相應(yīng)的應(yīng)變測(cè)量。對(duì)載重的循環(huán)周期進(jìn)行計(jì)算,下雨循環(huán)計(jì)數(shù)技術(shù)得到了使用。在一年內(nèi)這些起重機(jī)運(yùn)作的樣本被觀察為了得到運(yùn)作周期的平均數(shù)。疲勞失效分析表明,一些元件的故障是自然的系統(tǒng)因素,并且不能被一些隨意的原因所解釋。1999年Elsevier公司科學(xué)有限公司。保留所有權(quán)利。</p><p>  關(guān)鍵詞:起重機(jī);疲勞評(píng)估;應(yīng)變測(cè)量</p><p>  1.緒

79、論  頻繁觀測(cè)龍門式起重機(jī)LT62B在運(yùn)作時(shí)金屬元件疲勞失效。引起疲勞裂紋的故障沿著起重機(jī)的橋梁焊接接頭進(jìn)行傳播,并且能夠支撐三到四年。這種起重機(jī)在森林工業(yè)的伐木林場(chǎng)被廣泛使用,用來轉(zhuǎn)移完整長度的原木和鋸木到鐵路的火車上,有一次裝載30噸貨物的能力。 這種類型的起重機(jī)大約1000臺(tái)以上工作在俄羅斯森林工業(yè)的企業(yè)中。限制起重機(jī)壽命的問題即最弱的要素被正式找到之后,預(yù)測(cè)其疲勞強(qiáng)度,并給制造商建議,以提高起重機(jī)的壽命。&

80、lt;/p><p>  2.起重機(jī)運(yùn)行分析  為了分析,在葉卡特琳堡地區(qū)的林場(chǎng)碼頭選中了一臺(tái)被安裝在葉卡特琳堡地區(qū)的林場(chǎng)碼頭的龍門式起重機(jī)LT62B, 這臺(tái)起重機(jī)能夠供應(yīng)兩個(gè)伐木廠建立存儲(chǔ)倉庫,并且能轉(zhuǎn)運(yùn)木頭到鐵路的火車上,這條鐵路通過存儲(chǔ)倉庫。這些設(shè)備的安裝就是為了這個(gè)轉(zhuǎn)貨地點(diǎn)在起重機(jī)的跨度范圍之內(nèi)。一個(gè)起重機(jī)示意圖顯示在圖1中 。 1350-6307/99 /元,看到前面的問題。 1999

81、年Elsevier公司科學(xué)有限公司保留所有權(quán)利。 PH:S1350-6307(98)00041-7</p><p>  V.A.Kopnov|機(jī)械故障分析6(1999)131-141</p><p><b>  圖1 起重機(jī)簡圖</b></p><p>  檢查起重機(jī)的工作之后,一系列的假設(shè)可能會(huì)作出: ·如果每月從森林移動(dòng)的原木

82、超過加工率,即是有一個(gè)原木存儲(chǔ)的倉庫,這個(gè)起重機(jī)期待的工作,也只是在原木加工的實(shí)際堆數(shù)在所供給原木數(shù)量的中心線以下;·當(dāng)處理超過原木從森林運(yùn)出的速度時(shí),起重機(jī)的工作需要在的大量的木材之上進(jìn)行操作,相當(dāng)于在大量的木材上這個(gè)鋸木廠賺取的很少;·原木不同的倉庫;大量的木材的高度被認(rèn)為是最高的; ·倉庫的變化,取替了一側(cè)對(duì)面的鋸軋機(jī); ·裝載進(jìn)程中總量是平均為K=1.4倍大于移動(dòng)總量由于額外的轉(zhuǎn)移

83、。</p><p>  2.1 搬運(yùn)強(qiáng)度  據(jù)了解,每年的搬運(yùn)強(qiáng)度是不規(guī)律的,不能被視為一個(gè)平穩(wěn)過程。非平穩(wěn)流動(dòng)的道路列車的性質(zhì)在23家企業(yè)中已經(jīng)研究5年的時(shí)間,結(jié)果已經(jīng)表明在年復(fù)一年中,對(duì)于每個(gè)企業(yè)來說,每個(gè)月的搬運(yùn)強(qiáng)度都是不同的。這是解釋復(fù)雜的各種系統(tǒng)和隨機(jī)效應(yīng),對(duì)搬運(yùn)施加的影響:天氣條件,道路條件和貨車車隊(duì)等,所有木材被運(yùn)送到存儲(chǔ)倉庫的木材,在一年內(nèi)應(yīng)該被處理。 因此,在春季和秋季搬運(yùn)

84、木頭的可能性越來越小,冬天搬運(yùn)的可能性越來越大,然而在冬天搬運(yùn)強(qiáng)度強(qiáng)于預(yù)想的,在夏天的情況下,更多足夠長的木材就地被處理的比運(yùn)出去的要多的多。</p><p>  V.A.Kopnov|機(jī)械故障分析6(1999)131-141</p><p>  表1 搬運(yùn)強(qiáng)度(%)</p><p><b>  表2 轉(zhuǎn)移儲(chǔ)存量</b></p>

85、<p>  通過一年的觀察,從118各搬運(yùn)值的觀察所了解到的數(shù)據(jù)進(jìn)行分析,并且有可能評(píng)價(jià)相關(guān)的搬運(yùn)強(qiáng)度(噸)參考年度的裝載量的百分比。該搬運(yùn)的數(shù)據(jù)被記錄在起重機(jī)預(yù)期值表1中,它可以被應(yīng)用到估計(jì)疲勞壽命,尤其是為檢查起重機(jī)應(yīng)變測(cè)量(見稍后) 。將有可能為每個(gè)起重機(jī),每一個(gè)月所負(fù)荷的載重量,建立這些數(shù)據(jù),無需特別困難的統(tǒng)計(jì)調(diào)查。此外,為了解決這個(gè)問題的壽命預(yù)測(cè)的知識(shí)是未來的荷載要求, 在類似的操作條件下,我們采取起重機(jī)預(yù)期值。&l

86、t;/p><p>  每月搬運(yùn)價(jià)值的分布Q(t) ,被相對(duì)強(qiáng)度q(t)表示為  </p><p>  其中Q是每年的裝載量的記錄存儲(chǔ),是設(shè)計(jì)的最大存儲(chǔ)原木值Q以百分比計(jì)算,其中為考察起重機(jī)等于40.0萬立方米每年, 和容積載重搬運(yùn)為10 % 的起重機(jī),得到的數(shù)據(jù)列在表2 中,總量56000立方米每年,用K表示。</p><p>  2.2 裝載木塊的數(shù)量

87、  這個(gè)運(yùn)行裝置,如夾緊,吊裝,轉(zhuǎn)移,降低,和釋放負(fù)載可被視為起重機(jī)的一個(gè)運(yùn)行周期(加載塊)。參照這個(gè)調(diào)查結(jié)果,以操作時(shí)間為一個(gè)周期,作為范本,由正常變量與平均值11.5分相等等,標(biāo)準(zhǔn)差為1.5分鐘。不幸的是,這個(gè)特點(diǎn)不能簡單地用于定義運(yùn)作周期的數(shù)目,任何工作期間的載重加工是非常不規(guī)則。使用運(yùn)行時(shí)間的起重機(jī)和評(píng)價(jià)周期時(shí)間,,與實(shí)際增加一個(gè)數(shù)量的周期比,很容易得出比較大的誤差,因此,最好是作為如下。  &#

88、160;測(cè)量一個(gè)單位的載荷,可以作為范本,由一個(gè)隨機(jī)變量代入分布函數(shù)得出,并且比實(shí)際一包貨物少然后,明知總量的加工負(fù)荷為1個(gè)月或一年可能確定分布參數(shù)的數(shù)目,運(yùn)作周期為這些時(shí)期要利用這個(gè)方法的更新理論</p><p>  V.A.Kopnov|機(jī)械故障分析6(1999)131-141</p><p>  圖2 隨機(jī)重建過程中的負(fù)荷</p><p>  根據(jù)這些方法,隨

89、機(jī)重建過程中所顯示的圖。二是考慮到, (隨機(jī)變量)負(fù)荷,形成了一個(gè)流動(dòng)的數(shù)據(jù)鏈:</p><p>  在重建的理論中,隨機(jī)變量:,有一個(gè)分布函數(shù)f(t)的,可以被理解為在失敗的連接或者要求收據(jù)時(shí)的恢復(fù)時(shí)刻。過程的載荷值,作為下一次的動(dòng)作的通過值,被看作是重建的時(shí)刻。</p><p>  設(shè)。函數(shù)f(t)反復(fù)被定義,假設(shè)V ( t )是在運(yùn)作周期內(nèi)轉(zhuǎn)移貨物的數(shù)量。實(shí)踐中,總轉(zhuǎn)移貨物的總噸數(shù),

90、基本上是大于機(jī)組負(fù)荷,,由于利用漸近性質(zhì)的重建過程所以式有益的。根據(jù)下面適當(dāng)?shù)南拗浦亟ǘɡ?,需要轉(zhuǎn)移大量噸數(shù)。已正態(tài)分布漸近與均值和方差,確定抽樣數(shù)量的周期v</p><p>  而不依賴于整個(gè)的形式分布函數(shù)的,(只對(duì)不同的格式分配進(jìn)行限制)。利用表2的每個(gè)月平均運(yùn)作用方程(4)表示,賦予正態(tài)分布功能的數(shù)量,負(fù)載周期與參數(shù)m和6。在正態(tài)分布表3中 。圖3顯示的平均人數(shù)周期與95 %的置信區(qū)間某一年的相應(yīng)的值為12

91、719和420個(gè)周期。</p><p>  表3 運(yùn)作周期的正太分布</p><p>  3 .應(yīng)變測(cè)量  為了顯示大多數(shù)金屬的負(fù)載元素,并且確定一系列的壓力,事前做了靜態(tài)應(yīng)變測(cè)量。垂直載荷用來測(cè)量懸掛負(fù)載,并且斜交加載由一個(gè)牽引力所形成,配備了一臺(tái)測(cè)力計(jì)。靜態(tài)應(yīng)力值分布在圖4和5中 。同樣地預(yù)計(jì),梁上的最大的拉應(yīng)力,發(fā)生在底部的桁架上(值為11-45 MPA )。頂

92、端的桁架受到最大的壓縮應(yīng)力。 此處的彎曲應(yīng)力所造成的壓力,車輪起重機(jī),手推車等被添加到所說的橋梁和負(fù)荷的重量。這些壓力的結(jié)果,在底部的共振的的I梁那么壓縮應(yīng)力比最高的1 處要大得多(值17-75和10-20兆帕斯卡),其他要素的梁加載的值</p><p>  V.A.Kopnov|機(jī)械故障分析6(1999)131-141</p><p><b>  月份</b><

93、;/p><p>  圖3 95%的置信區(qū)間運(yùn)作周期的平均數(shù)</p><p>  V.A.Kopnov|機(jī)械故障分析6(1999)131-141</p><p><b>  圖4梁的分配計(jì)劃</b></p><p>  不超過絕對(duì)值45兆帕斯卡。連接與支持的橋梁起重機(jī)加載的時(shí)間,也不定期。最大的壓縮應(yīng)力發(fā)生在變形的最大角度,

94、在內(nèi)部看來;最高壓力值將達(dá)到到h0MPa和痛苦(計(jì)8日和9 ) 。在隔板和角度1的支板上,最大的拉應(yīng)力達(dá)到45兆帕斯卡(壓力表1 )。 起重機(jī)梁的器件在受到最大壓力和軸向載荷較弱的時(shí)候,另一方面,所遭受的主要是斜負(fù)荷。起重機(jī)的豎向載荷主要是由牽引力引起的。</p><p>  這種轉(zhuǎn)移完整長度的木材的起重機(jī)的金屬的載重量,不同于一般用途的起重機(jī)。首先它必須遵循起重機(jī)的裝載規(guī)則,由于逐步脫離基地。因此,負(fù)荷增加,并

95、不是慢慢的順利進(jìn)行。 第二個(gè)特點(diǎn)是物質(zhì)吊裝的加快導(dǎo)致低低效率。這是抓斗所存在的所限制,這意味著不允許繩索從吊具座下降;載重量應(yīng)始終保持平衡。負(fù)載減弱加快電機(jī)運(yùn)轉(zhuǎn)的可能性是沒有根據(jù)的,因此微乎其微。因此,以同時(shí)懸掛的速度,森林龍門式起重機(jī)受到較小的動(dòng)應(yīng)力與類似的一般用途的起重機(jī)相比而言。通常,當(dāng)速度增加順利,在接通電器之后,從基地進(jìn)行轉(zhuǎn)載3.5-4.5秒鐘進(jìn)行一個(gè)循環(huán)。在事實(shí)上,并沒有發(fā)現(xiàn)金屬有顯著的振蕩,并且壓力慢慢達(dá)到了最大值。<

96、;/p><p>  V.A.Kopnov|機(jī)械故障分析6(1999)131-141</p><p><b>  圖5 支持分配</b></p><p>  當(dāng)可能性最明朗的時(shí)候,在伸展和抓取的結(jié)合處,在按下開關(guān)后一秒鐘繩索開始繃緊,在結(jié)合處清楚的發(fā)生。這個(gè)電動(dòng)機(jī)以0.6-0.7每秒的速度進(jìn)行旋轉(zhuǎn)。從按下開關(guān)到繩索完全拉緊這一刻,需要3-3.5 s

97、的時(shí)間,緊張的繩索慢慢的增加倒最長。梁的最大壓力增長倒最大值1-2 S并且平均振蕩為3.5 % 。   當(dāng)一個(gè)固定的負(fù)荷解除時(shí),加快速度,裝載在鋼絲繩上的吊具和金屬幾乎是相同的情況下快速吊起一堆捆扎的木材。該金屬金工振蕩的特點(diǎn)是有兩個(gè)諧波在0.6和2秒的過程當(dāng)中,這些已經(jīng)在前面的分析中獲得。從總結(jié)裝貨的振幅可以看出在最壞的情況下裝載貨物,使最高動(dòng)態(tài)加載超過上述靜態(tài)載荷可以達(dá)到13-14 % 。制動(dòng)一個(gè)負(fù)荷,當(dāng)它逐漸

98、降低時(shí),在金屬制品上產(chǎn)生顯著的振動(dòng)應(yīng)力,可以達(dá)到靜態(tài)載荷的7%左右。</p><p>  移動(dòng)超過鋼軌接頭的3-4毫米的高度時(shí),得到的只有微不足道的壓力。 在運(yùn)行中,有可能的情況下,當(dāng)源自不同類型的負(fù)荷加載結(jié)合起來。 當(dāng)最高負(fù)荷從制動(dòng)負(fù)荷時(shí)降低,是最大負(fù)荷情況配合制動(dòng)手推車與同的調(diào)整制動(dòng)器。</p><p><b>  4.疲勞載荷分析</b></p>

99、<p>  通過起重機(jī)的工作和壓力示波圖的獲得,在測(cè)試點(diǎn)進(jìn)行應(yīng)變測(cè)量,在圖6</p><p>  和第5中排列顯示,自一臺(tái)起重機(jī)的常見工作周期的時(shí)間由足夠的散射和平均值約為15分鐘,常見的運(yùn)行周期的時(shí)間起重機(jī)有足夠的散射與平均價(jià)值11.5 ) </p><p>  V.A.Kopnov|機(jī)械故障分析6(1999)131-141</p><p>  時(shí)間(0

100、.1分鐘)裝貨過程變化值</p><p>  民,以減少這些示意圖均勻過濾所產(chǎn)生的這些信號(hào),和所有反復(fù)的形成的值,也就是說,當(dāng)結(jié)構(gòu)是不受到動(dòng)態(tài)加載,只有靜態(tài)加載發(fā)生時(shí),將會(huì)被拒絕。 三個(gè)特點(diǎn)強(qiáng)調(diào)示意圖 (表11 )顯示在表6中,而裝貨運(yùn)行周期的內(nèi)部結(jié)構(gòu)是可見的。首先,當(dāng)負(fù)載被提升時(shí),壓力增加到最高值。當(dāng)載荷被轉(zhuǎn)移到合適的位置并且強(qiáng)烈振蕩之后之后,由于不規(guī)則起重機(jī)運(yùn)動(dòng)對(duì)鋼軌及以上的鋼軌接頭導(dǎo)致大量的軸向載荷作為大多

101、數(shù)降低載荷的原因。減少貨物的裝載量導(dǎo)致裝載量減少,并且建成一項(xiàng)基本負(fù)載周期的一半。</p><p>  4.1 裝載過程中的振幅分析  這兩個(gè)名詞,現(xiàn)在應(yīng)該分開:裝載周期和裝載量。第一是作為一獨(dú)特的振蕩講(閉環(huán)),二是為一套加載周期期間一個(gè)運(yùn)行周期。   該雨流循環(huán)計(jì)數(shù)方法給出了最終裁決。[ 2 ]是采取優(yōu)勢(shì),以前面提到的疲勞的強(qiáng)度回線分析,為三個(gè)最弱的要素:(1)底部角度的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論