版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> 附錄4 外文文獻(xiàn)翻譯</p><p> RAILWAY SUSPENSION BRIDGE</p><p> IN WOERDEN, THE NETHERLANDS</p><p><b> SUMMARY</b></p><p> In Woerden, a small town in
2、 the west of the Netherlands, a railway fly-over has been builtwhere two railway tracks meet. The fly-over consists of a single-track viaduct. This has alength of 438.5 m. The crossing angle is 10 degrees. At the fly-ove
3、r site the viaduct is suspended from a pylon that has been constructed over two tracks passing underneath.</p><p> 1. INTRODUCTION</p><p> A railway bridge was constructed in Woerden as part o
4、f the track expansion of theNetherlands Railways. More trains will be run, the running speeds will be increased and thepossibility of delays must be reduced. In order to make this possible, many line sections mustbe four
5、-track and trains must be able to cross each other at different levels.</p><p> This paper examines the fly-over in Woerden.</p><p> 2. SITUATION AND REQUIREMENTS</p><p> The fly
6、-over in Woerden must bridge the following elements:</p><p> - two existing tracks;</p><p> - two future tracks;</p><p> - a polder drainage pool;</p><p> - an unde
7、rpass for all traffic.</p><p> The subsoil exhibits a great variation in compressibility. The forecast for settlement after 30years for the adjacent track bed on one side is about 0.5 m and on the other sid
8、e about 3 m. To limit settlement, and due to the lack of space for access, the construction height of thebridge must be as low as possible.</p><p> The existing tracks and the underpass must remain in opera
9、tion during the construction. Theflow capacity of the polder drainage pool may not be restricted.</p><p> 3. GENERAL DESCRIPTION</p><p> The total length of the viaduct is 438.5 m, comprising
10、six sections (fig. 1).</p><p> Section I crosses the underpass and has a length of 82.3 m. The two intermediate supports aresituated immediately adjacent to the concrete casing of the underpass, setting the
11、 spans at 22.7 m, 35 m and 22.65 m.</p><p> Sections II to V have a length of 47.3 m and each consists of two spans of 22.65 m. Thelengths and spans were determined by the remaining space between sections I
12、 and VI and costoptimisation. Section II crosses the polder drainage pool.</p><p> Section VI, with a length of 167 m, crosses the two existing and the two future tracks. Thespans range between 26.3 and 46.
13、7 m, with the supports staggered under the side beams. Allbridges have been made from pre-stressed concrete.</p><p> To limit the construction height, it was decided to employ a U-shaped cross-section (fig.
14、 2). The track floor lies low between the two load-bearing perimeter beams with a breadth of 1.4m. The height of the beams is 1.5 m for the small spans and 2.8 m for the larger. Theappearance of a gradual transition from
15、 low to high beams is caused by walls that increase inheight at the ends of the low beams, connecting to the high beams.</p><p> The track construction consists of a continuous ballast bed. Only for the tra
16、nsition fromsection VI to the track bed are two compensation welds used in the rails to absorb changes inlength due to temperature shifts. At the other joins between the bridge sections the rails run continuously through
17、.</p><p> The lack of space at the site means that the crossing angle with the tracks that are to be newlylaid is only 10 degrees. In addition, points are projected to be positioned in the tracks passing<
18、;/p><p> underneath, so that no columns can be located between the new tracks. For such situations, ‘pergola constructions’ are often built, consisting of long rows of columns along the trackwhich support a co
19、ncrete deck with a span direction perpendicular to the tracks passingunderneath. The pergola would in this situation be 160 m long and vary between 14 m and 28m in width.</p><p> For aesthetic and economic
20、reasons, an innovative solution has been developed: Thesuspension of the crossing U-shaped bridge from a pylon which is constructed over the tracksthat will be running underneath (fig. 3). This creates a transparent cons
21、truction thatguarantees a view of the countryside and clearly expresses the forces at work. This bridge isthe first of its kind in the Netherlands.</p><p> Despite the high construction cost of the pylon, t
22、he total cost of the solution chosen is lowerthan for a pergola.</p><p> The suspension from the pylon is such that the forces in the U-shaped bridge work as evenlyas possible and high peak stresses are avo
23、ided. The load from the U-shaped beams is divertedto the three suspension cable anchors per beam underneath. The cables run via conduitsthrough the beams to the intersection of the ridge beam and the slanting pylon colum
24、ns (fig. 4).</p><p> The horizontal loads from the bridge are fed directly to the columns of the pylon via ridgeslocated on the outside of the U-shaped beams.</p><p> 4. CONSTRUCTION ASPECTS&l
25、t;/p><p> 4.1 Static system superstructure</p><p> The fly-over is constructed from six bridge sections. The bridge parts are mounted onreinforced rubber bearings. At their extremes, the sections
26、 are fixed horizontally in the crossdirection by steel guiding constructions that primarily absorb the horizontal thrust forces andcentrifugal forces; the ends of the bridge are free to move in the longitudinal direction
27、. Thesection crossing the track is also fixed at the pylon both in the cross direction and in thelongitudinal direction by horizontal st</p><p> 4.2 Substructure</p><p> The foundations of the
28、 fly-over are primarily pre-fabricated pre-stressed 450 x 450 mm2</p><p> concrete piles with a length varying between 13 m and 18 m and with a pile depth varyingfrom 12.50 m to 18.00 m below ground level.
29、Both abutments have a foundation of steel pipe piles Ø 508 mm with a wall thickness of 16mm. The piles are filled with concrete and fitted with reinforcement. The use of steel pipepiles for the abutments was made ne
30、cessary by the settlement of the connecting raised trackbeds as a result of the compressible subsoil which might subject the piles to bending. Prestresse</p><p> The columns under the U-shaped bridge ends a
31、re coupled crossways with a beam constructiondue to the horizontal forces that are diverted there via the guiding constructions. In order to be able to quantify the interaction of the track with the substructure, a track
32、longitudinal forces program has been developed in which the whole system is divided intodiscrete components by means of the following elements:</p><p> - rail elements;</p><p> - ballast eleme
33、nts;</p><p> - bridge elements;</p><p> - bearing elements;</p><p> - pile elements;</p><p> - foundation elements.</p><p> The bridge system is physi
34、cally described with these elements, and the accompanyingparameters are entered for each type.</p><p> Generally, CWR track is used. If, however, the expanding bridge lengths become too great, ‘compensation
35、’ welds or compensation constructions, in which the track has overlapping ‘tongues’ and so is free to undergo deformation, must be used due to the rail forces reachingtoo high a level as a result of braking forces and te
36、mperature effects. At the location of one of the intermediate supports, bridge section VI is suspended from apylon construction where the bridge is also fixed horizontally. Due </p><p> 4.3 Pre-stressing<
37、;/p><p> The U-shaped bridges are constructed from pre-stressed concrete.</p><p> The following can be distinguished:</p><p> - longitudinal pre-stressing in the U-shaped beams, thr
38、ough which the beam’s ownweight, the permanent load and the working load are diverted;</p><p> - cross pre-stressing of the U-shaped ends in the base. This absorbs the shear tensionsthat are generated as a
39、result of the longitudinal pre-stressing.</p><p> For the 167 m long track-crossing section VI, a 27-strand longitudinal pre-stressing systemwas chosen with strands Ø 15,2 mm, FeP 1860. Eight units are
40、 used for each beam. For thecross pre-stressing, the BBRV system, which is not liable to wedge-settlement, was chosen. This was due to the relatively short length (approx. 7.50 m), which means that the effect ofwedge set
41、tlement would have been too great on the extent of the pre-stressing.</p><p> The average pre-stressing level in the U-shaped bridges is between 4.5 and 5.5 N/mm2.</p><p> An additional compli
42、cation arose at the pylon where the bridge is suspended with vertical guycables. There are three guy cables for each U-shaped beam which are carried via steelconduits Ø 400 mm through the 1.40 m wide U-shaped beams.
43、 This provided much concernwith respect to accommodating the eight pre-stressing cables, the shear forces that arise andthe soft steel reinforcement connected with this as a result of the bending of the tensiontrajectori
44、es through this deformation. The criterion fo</p><p> The U-shaped bridges were calculated with a finite-element model in which such factors as, with a view to fatigue, the main pull in the concrete would n
45、ot exceed the value of 0,5 f’'ck.</p><p><b> 4.4 Pylon</b></p><p> The pylon was calculated by means of dividing it into discrete bar elements in a finite-elementmodel. The hor
46、izontal struts, that can only bear compressive forces, were divided into springelements with the characteristic that they are inactive for an pulling load, so that it is a nonlinearcalculation.</p><p> The
47、horizontal struts (figs. 5 and 6) that fix the U-shaped bridge both in the longitudinal andin the cross direction, thus bear the longitudinal forces (primarily braking, starting and trackforces) and the cross forces (mai
48、nly thrust, centrifugal and wind forces).</p><p> The horizontal struts comprise four steel pipes Ø 508 mm with a wall thickness of 30 mm. The length varies from 1025 mm to 2285 mm. The brackets are co
49、nstructed in such a waythat they are able only to bear compressive forces. The steel pipes provide support for concretebrackets at the base level of the bridge. This connection, that cannot absorb pull forces, isfitted w
50、ith a conical dowel, a ‘seeker dowel’, that ensures that the support construction iscentred at all times, even when it is disenga</p><p> The maximum compressive force that occurs in the most heavily loaded
51、 strut is 3020 kN. Themaximum cross force has been calculated at 248 kN.</p><p> 4.5 Guy cables</p><p> At the pylon, the bridge is suspended with two groups of vertical guy cables. Three cabl
52、es arefitted to each beam, which move as a group in relation to the axis of this support (fig. 5). Thecables are fed through the U-shaped beam and pylon via in-built steel conduits, with theanchor-heads are supported to
53、accurately horizontally positioned steel anchor plates. The cables are ‘Hiam cables’, composed of 253 strands Ø 7 mm, FeP 1670.</p><p> Load on the cables:</p><p> - the six cables absorb
54、 a maximum reactive force of 20970 kN, 22% of whichis causedby the working load;</p><p> - the most heavily loaded cable absorbs a maximum reactive force of 3880 kN;</p><p> - the least heavil
55、y loaded cable absorbs a reactive force of 3070 kN.</p><p> In the design of the cables, the following requirements were set:</p><p> the maximum deformation due to the working load must be le
56、ss than 1/800 part of theadjoining span;</p><p> - collapse safety criteria;</p><p> - fatigue criteria;</p><p> - changing a cable under the own weight of the bridge and permane
57、nt load;</p><p> - taking over the load after sudden failure of a cable under maximum load;</p><p> - preservation requirements.</p><p><b> 荷蘭跨線(xiàn)高架橋</b></p><
58、;p><b> 摘要</b></p><p> 在荷蘭西部的一個(gè)小鎮(zhèn)兩條鐵路相交的地方,一座跨線(xiàn)鐵路橋已經(jīng)修建。這座單線(xiàn)高架橋全長(zhǎng)438.5m,交叉角10度,全橋懸吊于一個(gè)下面可通過(guò)兩條鐵路的塔式吊架上。</p><p><b> 1.說(shuō)明</b></p><p> 這座鐵路橋是為了滿(mǎn)足荷蘭鐵路建設(shè)擴(kuò)張時(shí)修建
59、的。為了讓更多的火車(chē)運(yùn)營(yíng),為了提高火車(chē)的運(yùn)營(yíng)速度,為了減少火車(chē)晚點(diǎn),許多線(xiàn)路段要修成四線(xiàn),而且火車(chē)必須能夠在不同的高度上相交錯(cuò)。這篇文章介紹了這座橋。</p><p> 2.地理環(huán)境及要求:</p><p> 這座高架橋必須跨越如下幾部分:</p><p><b> 兩條既有線(xiàn);</b></p><p><b
60、> 兩條新建線(xiàn);</b></p><p><b> 城市污水排放系統(tǒng);</b></p><p><b> 一條地下通道。</b></p><p> 該地區(qū)土層壓縮系數(shù)有很大的變化。據(jù)沉降預(yù)測(cè),30年后與毗連軌道相鄰的一側(cè)將下陷0.5m,而另一側(cè)卻要下陷3m。為了減小影響,再加上利用空間的有限,這座
61、橋的建筑高度必須盡可能的小。</p><p> 在施工期間,現(xiàn)存線(xiàn)路以及下面通過(guò)的線(xiàn)路都必須仍然正常運(yùn)營(yíng),而且排水系統(tǒng)的排水量不能受限。</p><p><b> 3.總體描述</b></p><p> 高架橋全長(zhǎng)438.5m,分為六部分。</p><p> 第一段全長(zhǎng)82.3燭,橫跨地下通道。兩中間墩與地下通道
62、貌岸然的混凝土壁緊密相鄰,墩間距分別為22.7m、35m、22.65m。</p><p> 第二段到第五段都為47.3m長(zhǎng)。每段兩跨墩間距為22.65m。其中第二段橫跨排水管道。段長(zhǎng)以及墩間距由全橋預(yù)留空間以及花費(fèi)來(lái)決定。</p><p> 長(zhǎng)167m的第六段跨越了兩條既有線(xiàn)和兩條新建線(xiàn)。墩間距在26.3m與46.7m之間變化,以使邊墩錯(cuò)開(kāi)。整座橋由預(yù)應(yīng)力混凝土建造。</p>
63、;<p> 為了降低建筑高度,決定采用“U型”橫斷面。軌底位于兩寬1.4m的加載邊界凹槽內(nèi)。在小跨度處梁高1.4m,在大跨度處為2.8m。從低到高的過(guò)渡由增加與高梁相接,低梁末端的梁高來(lái)實(shí)現(xiàn)。</p><p> 軌底建筑由持續(xù)的道碴床組成。為了承受由溫度變化引起的梁長(zhǎng)變化,在第六段與軌床之間使用了兩個(gè)補(bǔ)償式焊縫,用以過(guò)渡。在其它部他連續(xù)通過(guò)。</p><p> 空間的限
64、制意味著軌道交叉角僅僅可設(shè)置為10度。另外,計(jì)劃把岔尖設(shè)置在下面有線(xiàn)路通過(guò)的地方,以致在新線(xiàn)間不必設(shè)置支柱。在這種情況下,經(jīng)常使用“涼亭式”建筑,沿線(xiàn)路布置一長(zhǎng)排支柱,用它來(lái)支撐與線(xiàn)路正交的混凝土橋面板。這樣此建筑將長(zhǎng)160m,寬度在14m與28m之間變化。</p><p> 為了兼顧經(jīng)濟(jì)和美觀,一種經(jīng)革新了的方案已經(jīng)發(fā)展,即懸置于塔門(mén)上的U型橋,塔門(mén)建造在正在運(yùn)營(yíng)的線(xiàn)路正上方。這創(chuàng)造了一個(gè)顯而易見(jiàn)的工程,既保
65、證了鄉(xiāng)村的美景,又清晰的表達(dá)受力的作用。這是荷蘭第一座這種樣式的橋。</p><p> 盡管塔架的建筑花費(fèi)高,但此方案的總體花費(fèi)卻比涼亭式的低。</p><p> 這種形式使得U型橋的工作彎矩盡可能的平坦,從而避免了那種尖角。U型橋荷載轉(zhuǎn)移到了橋面下的三個(gè)支座錨樁上。索纜經(jīng)由管道通過(guò)橋體到達(dá)橋背與斜向塔柱相交處。水平荷載直接傳遞到位于U型橋體外側(cè)的塔柱之上。</p>&l
66、t;p><b> 4.建筑外貌</b></p><p> 4.1靜定系統(tǒng)上層結(jié)構(gòu)</p><p> 高架橋由六部分組成。橋面部分架置在加強(qiáng)摩檫的支承上。在它們的末端,橋段水平方向通過(guò)鋼制建筑承擔(dān)水平?jīng)_擊力和離心力。在縱向可自由移動(dòng)。穿過(guò)軌道部分也在橫向和縱向固定于U型橋體與塔門(mén)之間的塔柱上。</p><p><b> 4
67、.2基礎(chǔ)</b></p><p> 高架橋體主要由450×450mm2的預(yù)應(yīng)力混凝土預(yù)制裝配而成。預(yù)制混凝土長(zhǎng)度在13m到18m之間變化,寬在12.5m到18.0m之間變化。兩個(gè)拱座由鋼管混凝土制作而成。鋼管壁厚16mm,直徑508mm,內(nèi)部裝滿(mǎn)混凝土,它的使用是必須的。因?yàn)橛捎谕翂毫σ种屏虽摴艿膹澢鴮?dǎo)致軌床持續(xù)增寬。經(jīng)證明預(yù)應(yīng)力鋼筋混凝土不能承受這種彎矩。</p><
68、;p> 為了能夠確定軌道相互影響的數(shù)量,一種研究軌道縱向力的程序已經(jīng)在開(kāi)發(fā),整個(gè)系統(tǒng)分成以下幾個(gè)獨(dú)立單元:</p><p><b> 軌道;</b></p><p><b> 道碴;</b></p><p><b> 橋體;</b></p><p><b&g
69、t; 支座;</b></p><p><b> 墩;</b></p><p><b> 基礎(chǔ)。</b></p><p> 橋梁系統(tǒng)由這些單元共同描述,用與之相關(guān)的參數(shù)。</p><p> 總之,CWR軌道得到了使用。然而,假如橋面線(xiàn)膨脹變的太大,在軌道相接處,補(bǔ)償焊縫這種能自由
70、變形的補(bǔ)償建筑就必須得到使用。因?yàn)橹苿?dòng)力和溫度變化使的軌道力達(dá)到一個(gè)太高的水平。</p><p> 在居間支座位置上,塔橋段六懸吊于塔門(mén)上,水平向也被固定。這種結(jié)構(gòu)的高推力決定了橋臺(tái)的自由膨脹長(zhǎng)度。這個(gè)長(zhǎng)度比道碴面橋臺(tái)的最大膨脹長(zhǎng)度60m還大。因此導(dǎo)致補(bǔ)償焊縫的使用。</p><p><b> 4.3預(yù)應(yīng)力</b></p><p> U型
71、橋體采用預(yù)應(yīng)力混凝土材料。</p><p><b> 以下分為兩類(lèi):</b></p><p> 在梁體中的縱向預(yù)應(yīng)力,可傳遞梁自重、恒載以及施工荷載;</p><p> 在梁基底的橫向預(yù)應(yīng)力,能承擔(dān)由縱向預(yù)應(yīng)力引起的拉力和剪力。</p><p> 對(duì)167m長(zhǎng)的交叉梁段六,可選擇直徑152mm,極限張拉應(yīng)力186
72、0Mpa的27束縱向預(yù)應(yīng)力鋼絞線(xiàn)。每段梁采用八個(gè)這種單元。橫向預(yù)應(yīng)力選擇不易開(kāi)裂的BBRV體系。這是因?yàn)榕言陬A(yù)應(yīng)力限度內(nèi)的影響太大。</p><p> 梁體內(nèi)平均預(yù)應(yīng)力大約在4.5Mpa到5.5Mpa之間。</p><p><b> 4.4塔門(mén)</b></p><p> 塔門(mén)是由有限元把它分為相互獨(dú)立的單元來(lái)進(jìn)行計(jì)算的。僅僅承受壓應(yīng)力的
73、水平橫梁是被分成有特性的彈性單元。這些單元由于承載而不活動(dòng),以致它是一個(gè)非線(xiàn)形計(jì)算。</p><p> 縱橫向固定U型橋體的水平梁承擔(dān)縱向力(制動(dòng)力、起動(dòng)力)和橫向力。</p><p> 水平梁由4根壁厚30mm,直徑508mm的鋼管制成。長(zhǎng)度在1025mm到2285mm之間變化。用這種方式制作的承托僅僅能承擔(dān)壓應(yīng)力。</p><p> 這種不能承擔(dān)全預(yù)應(yīng)力的
74、連接適合圓錐形的銷(xiāo)釘,以確保支座居中,即使連接被解除。</p><p> 重載下產(chǎn)生的最大壓應(yīng)力是3020KN,最大橫向力經(jīng)計(jì)算為248KN。</p><p><b> 4.5索纜</b></p><p> 在塔門(mén)上,橋體由兩組垂直索纜懸吊。每個(gè)拱座上固定三根索纜,它們作為整體在墩中心線(xiàn)附近移動(dòng)。纜索經(jīng)由鋼管道,穿過(guò)橋體和塔架。</
75、p><p> 纜索是HIAM索,由253束直徑為7mm,抗拉預(yù)應(yīng)力為1670Mpa的鋼絞線(xiàn)組成。</p><p><b> 纜上荷載:</b></p><p> 六根纜承擔(dān)20970KN的最大活動(dòng)力,其中12%是由活載導(dǎo)致;</p><p> 最重要的承載纜承受最大活載3880KN;</p><p
76、> 索纜至少承擔(dān)3070KN的活載。</p><p> 在索纜的選擇中,以下是需考慮的:</p><p> 由工作荷載引起的最大變形必須比鄰近墩間距的?。?lt;/p><p><b> 衰弱安全準(zhǔn)則;</b></p><p><b> 疲勞準(zhǔn)則;</b></p><p
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 荷蘭跨線(xiàn)高架橋
- 城市高架橋跨線(xiàn)施工現(xiàn)澆支架施工技術(shù)
- 高架橋梁養(yǎng)護(hù)管理規(guī)定3.4
- 主要施工設(shè)備表(高架橋梁)
- 跨高速路高架橋吊裝方案
- 齊河跨北高架橋施工方案
- 地鐵高架橋梁施工工藝探討
- 高架橋論文高架橋 城市空間 綠化景觀 養(yǎng)護(hù)管理
- 城市高架橋梁結(jié)構(gòu)的減震研究
- 城市高架橋梁信息管理.pdf
- 靈山高架橋設(shè)計(jì)
- 城市高架橋設(shè)計(jì)探討
- 淮揚(yáng)高架橋
- 城市高架橋梁尺度比例美學(xué)研究.pdf
- 城市高架橋梁道路施工技術(shù)探析
- 安波高架橋
- 米洛高架橋
- 高架橋信號(hào)覆蓋
- 高架橋施工總結(jié)
- 城市高架橋防噪設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論