波形發(fā)生器外文資料及翻譯_第1頁
已閱讀1頁,還剩7頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p><b>  中文2040字</b></p><p>  WAVE-FORM GENERATORS</p><p>  1.The Basic Priciple of Sinusoidal Oscillators</p><p>  Many different circuit configurations deliver an

2、 essentially sinusoidal output waveform even without input-signal excitation. The basic principles governing all these oscillators are investigated. In addition to determining the conditions required for oscillation to t

3、ake place, the frequency and amplitude stability are also studied.</p><p>  Fig.1-1 show an amplifier, a feedback network, and an input mixing circuit not yet connected to form a closed loop. The amplifier p

4、rovides an output signal as a consequence of the signal applied directly to the amplifier input terminal. The output of the feedback network is and the output lf the mixing circuit (which is now simply an inverter) is

5、 </p><p>  Form Fig.1-1 the loop gain is</p><p>  Loop gain=</p><p>  Fig.1-1 An amplifier with transfer gain A and feedback network F not yet connected to form a closed loop.<

6、/p><p>  Suppose it should happen that matters are adjusted in such a way that the signalis identically equal to the externally applied input signal. Since the amplifier has no means of distinguishing the sourc

7、e of the input signal applied to it, it would appear that, if the external source were removed and if terminal 2 were connected to terminal 1, the amplifier would continue to provide the same output signal as before. No

8、te, of course, that the statement =means that the instantaneous values of andar</p><p>  The Barkhausen Criterion We assume in this discussion of oscillators that the entire circuit operates linearly and

9、that the amplifier or feedback network or both contain reactive elements. Under such circumstances, the only periodic waveform which will preserve, its form is the sinusoid. For a sinusoidal waveform the conditionis equi

10、valent to the condition that the amplitude, phase, and frequency ofandbe identical. Since the phase shift introduced in a signal in being transmitted through a re</p><p>  The frequency at which a sinusoidal

11、 oscillator will operate is the frequency for which the total shift introduced, as a signal proceed from the input terminals, through the amplifier and feedback network, and back again to the input, is precisely zero(or,

12、 of course, an integral multiple of 2). Stated more simply, the frequency of a sinusoidal oscillator is determined by the condition that the loop-gain phase shift is zero.</p><p>  Although other principles

13、may be formulated which may serve equally to determine the frequency, these other principles may always be shown to be identical with that stated above. It might be noted parenthetically that it is not inconceivable that

14、 the above condition might be satisfied for more than a single frequency. In such a contingency there is the possibility of simultaneous oscillations at several frequencies or an oscillation at a single one of the allowe

15、d frequencies.</p><p>  The condition given above determines the frequency, provided that the circuit will oscillate ta all. Another condition which must clearly be met is that the magnitude of and must be i

16、dentical. This condition is then embodied in the follwing principle:</p><p>  Oscillations will not be sustained if, at the oscillator frequency, the magnitude of the product of the transfer gain of the ampl

17、ifier and the magnitude of the feedback factor of the feedback network (the magnitude of the loop gain) are less than unity.</p><p>  The condition of unity loop gainis called the Barkhausen criterion. This

18、condition implies, of course, both that and that the phase of –A F is zero. The above principles are consistent with the feedback formula . For if , then, which may be interpreted to mean that there exists an output volt

19、age even in the absence of an externally applied signal voltage.</p><p>  Practical Considerations </p><p>  Referring to Fig.1-2, it appears that if at the oscillator frequency is precisely

20、 unity, then, with the feedback signal connected to the input terminals, the removal of the external generator will make no difference. If is less than unity, the removal of the external generator will result in a cessa

21、tion of oscillations. But now suppose that is greater than unity. Then, for example, a 1-V signal appearing initially at the input terminals will, after a trip around the loop and back to the input</p><p> 

22、 In every practical oscillator the loop gain is slightly larger than unity, and the amplitude of the oscillations is limited by the onset lf nonlinearity. </p><p>  Fig.1-2 Root locus of the three-pole trans

23、fer function in the s-plane. The poles without feedback () are ,,and,whereas the poles after feedback is added are ,,and .</p><p>  2. Triangle/square generation</p><p>  Fig.2.1 shows a functio

24、n generator that simultaneously produces a linear triangular wave and a square wave using two op-amps. Integratoris driven from the output ofwhere is wired as a voltage comparator that’s driven from the output of via vol

25、tage divider --. The square-wave output of switches alternately between positive and negative saturation levels.</p><p>  Suppose, initially, that the output of is positive, and that the output of has just s

26、witched to positive saturation. The inverting input of is at virtual ground, so a current equals. Becauseandare in series, and are equal. Yet, in order to maintain a constant current through a capacitor, the voltage acr

27、oss that capacitor must change linearly at a constant rate. A linear voltage ramp therefore appears across,causing the output ofto start to swing down luinearly at a rate of 1/volts per second. T</p><p>  Fi

28、g.2.1 Basic function generator for both triangular, and square waves.</p><p>  Consequently, the output ofswings linearly to a negative value until the--junction voltage falls to zero volts (ground), at whic

29、h point enters a regenerative switching phase where its output abruptly goes to the negative saturation level. That reverses the inputs of and, sooutput starts to rise linearly until it reaches a positive value that caus

30、es the --junction voltage to reach the zero-volt reference value, which initiates another switching action.</p><p>  The peak-to-peak amplitude of the linear triangular-waveform is controlled by the --ratio.

31、 The frequency can be altered by changing either the ratios of --, the values of or, or by feeding from the output of through a voltage divider rather than directly from op-ampoutput.</p><p><b>  英文資料譯

32、文</b></p><p><b>  波形發(fā)生器</b></p><p>  1.正弦振蕩器基本原理</p><p>  許多不同組態(tài)的電路,即使在沒有輸入信號激勵的情況下,也能輸出一個基本上是正弦形的輸出波形。我們將在下文討論所有這些振蕩器的基本原理,除了確定產生振蕩所需的條件之外,還研究振蕩頻率和振幅的穩(wěn)定問題。</p&

33、gt;<p>  圖1.1表示了放大器、反饋網絡和輸入混合電路尚未連成閉環(huán)的情況。當信號直接加到放大器的書入端時,放大器提供一個輸出信號。反饋網絡的輸出為,混合電路(現(xiàn)在就是一個反相器)的輸出為</p><p>  由圖1-1,環(huán)路增益為</p><p><b>  環(huán)路增益=</b></p><p>  圖1-1 尚未連成閉環(huán)

34、的增益為A的放大器和反饋網絡F</p><p>  假定恰好將信號調整到完全等于外加的輸入信號。由于放大器無法辨別加給它的輸入信號的來源,于是就會出現(xiàn)如下情況:如果除去外加信號源,而將2端同1端接在一起,則放大器將如以前一樣,繼續(xù)提供一個同樣的輸出信號。當然要注意,=這種說法意味著和的瞬時值在所有時刻都完全相等。條件=等價于,即環(huán)路增益必須等于1。</p><p>  巴克豪森判據 在以

35、下關于振蕩器的討論中我們假定,整個電路工作在線形狀態(tài),并且放大器或反饋網絡或它們兩者是含有電抗元件的。在這些條件下,能保持波形形狀的唯一周期性波形是正弦波。對正弦波而言,條件=等同于和的幅度、相位和頻率都完全一樣的條件。因為信號在通過電抗網絡時引入的相移總是頻率的函數,所以我們有如下重要原則:</p><p>  正弦振蕩器的工作頻率是這樣一個頻率,在該頻率下,信號從輸入端開始,經過放大器和反饋網絡后,又回到輸入

36、端時,引入的總相移正好是零(當然,或者是2的整數倍)。更簡單地說,正弦振蕩器的頻率取決于環(huán)路增益的相移為零這一條件。</p><p>  雖然還可以總結出其他可用來確定頻率的原則,但可以證明,它們同上述原則是一致的。附帶說明一下,滿足上述條件的頻率可能不止一個,這并不是不可理解的。在這種偶然情況下,有可能在幾個頻率處同時振蕩,或在所允許的幾個頻率中某一頻率處出現(xiàn)振蕩。</p><p>  

37、只要電路能振蕩,其頻率就由上述原則來確定。顯然還必須滿足另一個條件,即和的幅度必須相等。該條件概括為下述原則:</p><p>  在振蕩頻率處,如果放大器的轉移增益和反饋網絡的反饋系數的乘積(環(huán)路增益的幅值)小于1,則振蕩不能維持下去。</p><p>  環(huán)路增益為1,即這個條件叫做巴克豪森判據。當然,這個條件意味著不僅要求,而且要求—AF的相位為零。上述原則與反饋公式是一致的。因為如

38、果,則,這可以解釋為,即使沒有外加信號電壓,也仍然有輸出電壓。</p><p>  若干實際的考慮 參考圖1-2可以看出,如果在振蕩頻率處正好為1,那么將反饋信號接到輸入端,再除去外部信號源將不會造成任何影響。</p><p>  圖1-2 三級點傳遞函數在S平面上的根軌跡。無反饋時()的極點是,和。而加入反饋后的極點是,和</p><p>  如果小于1,那么除

39、去外部信號源將會導致停振。現(xiàn)在假定大于1,那么,最初出現(xiàn)在輸入端的信號,例如是1v,再繞路一周又回到輸入端時,其幅值將大于1v。然后這個較大的電壓又會以更大的電壓再出現(xiàn)于輸入端,如此循環(huán)往復。于是,似乎在不受放大器中有源器件的非線性的限制時,振幅的增大才能繼續(xù)下去。隨著振幅的增大,有源器件的非線性變得更加明顯。這種非線性的出現(xiàn),就限制了震蕩的幅度,這是所有實際振蕩器工作的基本特征,正如以下討論所表明的那樣:條件并不是給出的可取值范圍,而

40、是給出一個單一的精確值。限假設即使最初能滿足這個條件,由于電路元件特性,特別是晶體管特性受老化、溫度和電壓等影響發(fā)生變化(漂移),于是很顯然,如果整個振蕩器聽其自然,則在很短的時間內,就會變得不是小于1,就是大于1。在前一種情況下,只是振蕩停止而已,而在后一種情況下,我們就有需要用非線性來限制振幅。環(huán)路增益正好為1的振蕩器,實際上是一個根本不能實現(xiàn)的理想裝置。所以,在實際振蕩器的調試中,總是要調整多少比1大一些(比方說大50%),以保證

41、在晶體管和電路參數發(fā)生偶然變化時,不致下降到1以下。上述兩條原則是在純理論基礎上必須要滿足的,同時,我</p><p>  在每個實際的振蕩器中,環(huán)路增益都略大于1,并且振蕩幅度由非線性特性來限制。</p><p>  2. 三角波/方波發(fā)生器</p><p>  圖2-1示出了一個用兩極運放能同時產生線性三角波和方波的函數發(fā)生器。集成積分器由的輸出驅動,作為電壓比

42、較器,被的輸出,經--分壓器分壓后所驅動。的方波輸出于正負飽和電平間交替交換。</p><p>  圖2-1 具有雙向三角波和方波輸出的基本函數發(fā)生器</p><p>  假設,開始時,的輸出為正,的輸出恰好轉為正向飽和。的反向輸入端虛假接地,則電流。因為和是串聯(lián)的,所以=。然而為維持由恒定電流經過,加在該電容上的電壓必須以恒定的速率線性變化。一個線性的斜坡電壓加至,使的輸出開始以的速率線

43、性下降,這個輸出通過--分壓器送至的同相輸入端。</p><p>  然后,的輸出朝負值線性變化,直至和連接點的電壓下降到0V。在該點翻轉動作,使輸出突變到負飽和值。這樣就改變了和的輸入,使的輸出開始線性上升,直至升到某一正值為止,該值使--間的接點電壓達到0,便引起了另一次翻轉。</p><p>  線性三角波的峰峰值由--的比率來控制。頻率調整可以通過改變的比率,或,或通過將由的輸出端

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論