版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> Laser rangefinder </p><p> A long range laser rangefinder is capable of measuring distance up to 20 km; mounted on a tripod with an angular mount. The resulting system also provides azimuth and e
2、levation measurements.</p><p> A laser rangefinder is a device which uses a laser beam to determine the distance to an object. The most common form of laser rangefinder operates on the time of flight princi
3、ple by sending a laser pulse in a narrow beam towards the object and measuring the time taken by the pulse to be reflected off the target and returned to the sender. Due to the high speed of light, this technique is not
4、appropriate for high precision sub-millimeter measurements, where triangulation and other techniques are </p><p><b> Pulse</b></p><p> The pulse may be coded to reduce the chance t
5、hat the rangefinder can be jammed. It is possible to use Doppler effect techniques to judge whether the object is moving towards or away from the rangefinder, and if so how fast.</p><p><b> Precision&
6、lt;/b></p><p> The precision of the instrument is determined by the rise or fall time of the laser pulse and the speed of the receiver. One that uses very sharp laser pulses and has a very fast detector
7、can range an object to within a few millimeters.</p><p><b> Range</b></p><p> Despite the beam being narrow, it will eventually spread over long distances due to the divergence of
8、the laser beam, as well as due to scintillation and beam wander effects, caused by the presence of air bubbles in the air acting as lenses ranging in size from microscopic to roughly half the height of the laser beam'
9、;s path above the earth.</p><p> These atmospheric distortions coupled with the divergence of the laser itself and with transverse winds that serve to push the atmospheric heat bubbles laterally may combine
10、 to make it difficult to get an accurate reading of the distance of an object, say, beneath some trees or behind bushes, or even over long distances of more than 1 km in open and unobscured desert terrain.</p><
11、;p> Some of the laser light might reflect off leaves or branches which are closer than the object, giving an early return and a reading which is too low. Alternatively, over distances longer than 1200 ft (365 m), the
12、 target, if in proximity to the earth, may simply vanish into a mirage, caused by temperature gradients in the air in proximity to the heated surface bending the laser light. All these effects have to be taken into accou
13、nt.</p><p> Calculation</p><p> The distance between point A and B is given by</p><p><b> D=ct/2</b></p><p> where c is the speed of light in the atmosp
14、here and t is the amount of time for the round-trip between A and B.</p><p> where is the delay which made by the light traveling and is the angular frequency of optical modulation.</p><p>
15、Then substitute the values in the equation D=ct/2,D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ)=c/4f (N+ΔN)=U(N+)</p><p> in this equation, U stands for the unit length.</p><p> Δφ stands for the de
16、lay part which does not fulfill π.</p><p> ΔN stands the decimal value.</p><p> Discrimination</p><p> Some instruments are able to determine multiple returns, as above. These in
17、struments use waveform-resolving detectors, which means they detect the amount of light returned over a certain time, usually very short. The waveform from a laser pulse that hits a tree and then the ground would have tw
18、o peaks. The first peak would be the distance to the tree, and the second would be the distance to the ground.</p><p> Using wavefront sensing, it is possible to determine both the closest and the farthest
19、object at a given point. This makes it possible for aircraft-mounted instruments to see "through" dense canopies[clarification needed Please explain how lasers see through canopies] and other semi-reflective su
20、rface such as the ocean, leading to many applications for airborne instruments such as:</p><p> 1. Creating "bare earth" topographic maps - removing all trees</p><p> 2. Creating veg
21、etation thickness maps</p><p> 3. Bathymetry(measuring topography under the ocean)</p><p> 4. Forest firehazard</p><p> Technologies</p><p> Time of flight - this m
22、easures the time taken for a light pulse to travel to the target and back. With the speed of light known, and an accurate measurement of the time taken, the distance can be calculated. Many pulses are fired sequentially
23、and the average response is most commonly used. This technique requires very accurate sub-nanosecond timing circuitry.</p><p> Multiple frequency phase-shift - this measures the phase shift of multiple freq
24、uencies on reflection then solves some simultaneous equations to give a final measure.</p><p> Interferometry - the most accurate and most useful technique for measuring changes in distance rather than abso
25、lute distances.</p><p> Applications</p><p><b> Military</b></p><p> An American soldier with a GVS-5 laser rangefinder.</p><p> A Dutch ISAF sniper tea
26、m displaying their Accuracy International AWSM .338 Lapua Magnum rifle and Leica/Vectronix VECTOR IV laser rangefinder binoculars.</p><p> Rangefinders provide an exact distance to targets located beyond th
27、e distance of point-blank shooting to snipers and artillery. They can also be used for military reconciliation and engineering.</p><p> Handheld military rangefinders operate at ranges of 2 km up to 25 km a
28、nd are combined with binoculars or monoculars. When the rangefinder is equipped with a digital magnetic compass (DMC) and inclinometer it is capable of providing magnetic azimuth, inclination, and height (length) of targ
29、ets. Some rangefinders can also measure a target's speed in relation to the observer. Some rangefinders have cable or wireless interfaces to enable them to transfer their measurement(s) data to other equipment </p
30、><p> The more powerful models of rangefinders measure distance up to 25 km and are normally installed either on a tripod or directly on a vehicle or gun platform. In the latter case the rangefinder module is
31、integrated with on-board thermal, night vision and daytime observation equipment. The most advanced military rangefinders can be integrated with computers.</p><p> To make laser rangefinders and laser-guide
32、d weapons less useful against military targets, various military arms may have developed laser-absorbing paint for their vehicles. Regardless, some objects don't reflect laser light very well and using a laser rangef
33、inder on them is difficult.</p><p> 3-D Modelling</p><p> This LIDAR scanner may be used to scan buildings, rock formations, etc., to produce a 3D model. The LIDAR can aim its laser beam in a
34、wide range: its head rotates horizontally, a mirror flips vertically. The laser beam is used to measure the distance to the first object on its path.</p><p> Laser rangefinders are used extensively in 3-D o
35、bject recognition, 3-D object modelling, and a wide variety of computer vision-related fields. This technology constitutes the heart of the so-called time-of-flight 3D scanners. In contrast to the military instruments de
36、scribed above, laser rangefinders offer high-precision scanning abilities, with either single-face or 360-degree scanning modes.</p><p> A number of algorithms have been developed to merge the range data re
37、trieved from multiple angles of a single object to produce complete 3-D models with as little error as possible. One of the advantages that laser rangefinders offer over other methods of computer vision is that the compu
38、ter does not need to correlate features from two images to determine depth information as in stereoscopic methods.</p><p> Laser rangefinders used in computer vision applications often have depth resolution
39、s of tenths of millimeters or less. This can be achieved by using triangulation or refraction measurement techniques as opposed to the time of flight techniques used in LIDAR.</p><p><b> Forestry</
40、b></p><p> Laser rangefinder TruPulse used for forest inventories (in combination with Field-Map technology)</p><p> Special laser rangefinders are used in forestry. These devices have anti
41、-leaf filters and work with reflectors. Laser beam reflects only from this reflector and so exact distance measurement is guaranteed. Laser rangefinders with anti-leaf filter are used for example for forest inventories.&
42、lt;/p><p><b> Sports</b></p><p> Laser rangefinders may be effectively used in various sports that require precision distance measurement, such as golf, hunting, and archery. Some of
43、the more popular manufacturers are: Opti-logic Corporation, Bushnell, LaserTechnology, Trimble, Leica, Newcon Optik, Nikon, and Swarovski Optik.</p><p> Industry production processes</p><p> A
44、n important application is the use of laser Range finder technology during the automation of stock management systems and production processes in steel industry.</p><p><b> Safety</b></p>
45、<p> Laser rangefinders for consumers are laser class 1 devices and therefore are considered eyesafe. Some laser rangefinders for military use exceed the laser class 1 energy levels.</p><p><b>
46、 History</b></p><p> Development of the methods used in modern printed circuit boards started early in the 20th century. In 1903, a German inventor, Albert Hanson, described flat foil conductors lamin
47、ated to an insulating board, in multiple layers. Thomas Edison experimented with chemical methods of plating conductors onto linen paper in 1904. Arthur Berry in 1913 patented a print-and-etch method in Britain, and in t
48、he United States Max Schoop obtained a patent[1] to flame-spray metal onto a board through a patterne</p><p> The Austrian Jewish engineer Paul Eisler invented the printed circuit while working in England a
49、round 1936 as part of a radio set. Around 1943 the USA began to use the technology on a large scale to make proximity fuses for use in World War II . After the war, in 1948, the USA released the invention for commercial
50、use. Printed circuits did not become commonplace in consumer electronics until the mid-1950s, after the Auto-Sembly process was developed by the United States Army.</p><p> Before printed circuits (and for
51、a while after their invention), point-to-point construction was used. For prototypes, or small production runs, wire wrap or turret board can be more efficient. Predating the printed circuit invention, and similar in spi
52、rit, was John Sargrove's 1936–1947 Electronic Circuit Making Equipment (ECME) which sprayed metal onto a Bakelite plastic board. The ECME could produce 3 radios per minute.</p><p> During World War II,
53、the development of the anti-aircraft proximity fuse required an electronic circuit that could withstand being fired from a gun, and could be produced in quantity. The Centralab Division of Globe Union submitted a proposa
54、l which met the requirements: a ceramic plate would be screenprinted with metallic paint for conductors and carbon material for resistors, with ceramic disc capacitors and subminiature vacuum tubes soldered in place.<
55、/p><p> Originally, every electronic component had wire leads, and the PCB had holes drilled for each wire of each component. The components' leads were then passed through the holes and soldered to the PC
56、B trace. This method of assembly is called through-hole construction. In 1949, Moe Abramson and Stanislaus F. Danko of the United States Army Signal Corps developed the Auto-Sembly process in which component leads were i
57、nserted into a copper foil interconnection pattern and dip soldered. The patent the</p><p> In recent years, the use of surface mount parts has gained popularity as the demand for smaller electronics packag
58、ing and greater functionality has grown.</p><p><b> 激光測(cè)距儀</b></p><p> 激光測(cè)距儀是一種設(shè)備,它采用了激光束來(lái)確定對(duì)象的距離 。激光測(cè)距儀的最常見(jiàn)的形式運(yùn)行在窄光束激光脈沖通過(guò)發(fā)送對(duì)對(duì)象和測(cè)量飛行時(shí)間原則上要反映小康的目標(biāo),并退回給發(fā)件人脈沖的時(shí)間 。由于高光的速度,這種技術(shù)是不為亞毫米級(jí)的
59、測(cè)量精度高,在適當(dāng)?shù)娜呛推渌夹g(shù)經(jīng)常被用來(lái)。</p><p><b> 脈沖</b></p><p> 編碼脈沖可減少測(cè)距儀可機(jī)會(huì)卡住 。 這是可能使用多普勒效應(yīng)的技術(shù),來(lái)判斷該對(duì)象是否是朝向或遠(yuǎn)離測(cè)距儀,如果這樣的速度有多快。</p><p><b> ]精密</b></p><p>
60、該儀器的精度是由激光脈沖的上升或下降時(shí)間和接收器的速度。 一個(gè)使用非常尖銳的激光脈沖,并有一個(gè)非??斓奶綔y(cè)器范圍對(duì)象幾毫米之內(nèi)。</p><p><b> 范圍</b></p><p> 盡管是窄的光束 ,它最終將遍布由于長(zhǎng)距離的激光束發(fā)散 ,以及由于閃爍和光束漂移的影響,由大小不等,從鏡頭的空氣中存在氣泡引起的微觀到激光束的路徑在地球上空大約有一半的高度。<
61、;/p><p> 這些大氣中的扭曲與激光本身的分歧,并為推動(dòng)橫向風(fēng),再加上大氣的熱氣泡橫向相結(jié)合,使其很難獲得一個(gè)物體的距離準(zhǔn)確的讀數(shù),說(shuō)下一些樹(shù)木或灌木叢背后,或什至超過(guò)開(kāi)放,視野開(kāi)闊的沙漠地形中超過(guò)1公里長(zhǎng)的距離。</p><p> 激光有些人可能會(huì)反映樹(shù)葉或樹(shù)枝,這是比對(duì)象更緊密,從而早日回歸和閱讀太低。 另外,距離超過(guò)1200英尺(365米),如果在接近地球的目標(biāo),不再只是可能到由
62、溫度引起的海市蜃樓 ,在彎曲的激光加熱表面附近的空氣梯度消失。 所有這些影響必須加以考慮。</p><p><b> 計(jì)算</b></p><p><b> 點(diǎn)A和B之間的距離</b></p><p><b> D=ct/2</b></p><p> 其中 c是光在大氣
63、中的速度和t是為A和B之間的往返時(shí)間</p><p> 哪里 光旅游和延遲 光調(diào)制角頻率。</p><p> 然后替換值的公式:D = CT / 2,= 1/2克拉= 1/2 C·φ/ω= C /(4πf)(Nπ+Δφ)= c/4f(+Δn)的=ü (+)</p><p> 在這個(gè)公式中,U代表單位長(zhǎng)度。</p><p
64、> Δφ表示延遲部分不履行π。</p><p> ΔN代表的十進(jìn)制值。</p><p><b> 歧視</b></p><p> 有些工具是能夠確定多回報(bào),如上。這些文書(shū)的使用波形 ,解決探測(cè)器,這意味著他們檢測(cè)到的光量,在一定的時(shí)間返回,通常很短。 從擊中了一棵樹(shù),然后在地面的激光脈沖的波形,將有兩個(gè)高峰。 第一個(gè)高峰將樹(shù)的距離
65、,第二個(gè)會(huì)到地面的距離。</p><p> 使用波前探測(cè),這是可能的,以確定最近和最遠(yuǎn)的物體在某一時(shí)間點(diǎn)。 這使得機(jī)載儀器看到“通過(guò)”密集的遮篷和其他半反射的表面,如海洋,導(dǎo)致許多應(yīng)用,如空中文書(shū):</p><p> 1.創(chuàng)建“裸露”地球地形圖 -消除所有的樹(shù)木</p><p> 2.創(chuàng)建植被厚度地圖</p><p> 3.水深 (下
66、測(cè)量地形海洋 )</p><p><b> 4.森林火災(zāi)的危險(xiǎn)</b></p><p><b> 技術(shù)</b></p><p> 飛行時(shí)間 -測(cè)量光脈沖的時(shí)間,前往目標(biāo)和背部。 與已知的光的速度,時(shí)間的精確測(cè)量,距離可以計(jì)算出來(lái)。 許多脈沖發(fā)射順序,是最常用的平均響應(yīng)。這種方法需要非常精確的子納秒級(jí)定時(shí)電路。<
67、/p><p> 多頻相移 -這個(gè)測(cè)量多個(gè)頻率上反射相移,然后解決了一些聯(lián)立方程組,給一個(gè)最終的措施。</p><p> 干涉 -測(cè)量距離的變化,而不是絕對(duì)的距離最準(zhǔn)確,最有用的技術(shù)。</p><p><b> 應(yīng)用</b></p><p><b> 軍事</b></p><p
68、> 測(cè)距儀提供了一個(gè)空白點(diǎn)位于距離以外的目標(biāo)拍攝狙擊手和炮兵的精確距離。</p><p> 手持式軍用測(cè)距儀在2公里至25公里范圍內(nèi)運(yùn)作,并結(jié)合雙筒望遠(yuǎn)鏡或單筒望遠(yuǎn)鏡。 當(dāng)測(cè)距儀配備數(shù)字磁羅盤(pán)(DMC)和傾角,它是能夠提供磁方位角,傾角,目標(biāo)高度(長(zhǎng)度)。還有些測(cè)距儀可以測(cè)量目標(biāo)的速度,在關(guān)系到觀察員。 某些測(cè)距儀擁有有線或無(wú)線接口,使他們以他們的測(cè)量(S)數(shù)據(jù)傳輸?shù)狡渌O(shè)備,如消防控制計(jì)算機(jī)。 有些機(jī)
69、型還提供了可能性,使用附加的夜視模塊。大多數(shù)手持測(cè)距儀使用標(biāo)準(zhǔn)或可充電電池。</p><p> 測(cè)距儀測(cè)量距離可達(dá)25公里和更強(qiáng)大的模型通常安裝在三腳架上,或直接上車(chē)或槍平臺(tái)。 在后一種情況下的測(cè)距模塊集成板上熱,夜視和白天的觀測(cè)設(shè)備。 可以與計(jì)算機(jī)集成最先進(jìn)的軍事測(cè)距儀。</p><p> 為了使激光測(cè)距儀和激光制導(dǎo)武器打擊軍事目標(biāo),各種軍事武器可能已開(kāi)發(fā)的激光吸收其車(chē)輛的油漆。 無(wú)
70、論如何,某些對(duì)象不反映激光非常好,對(duì)他們使用激光測(cè)距儀是困難的。</p><p><b> 3-D建模 </b></p><p> 激光測(cè)距儀被廣泛使用的3-D物體識(shí)別,三維對(duì)象建模,以及種類(lèi)繁多的計(jì)算機(jī)視覺(jué)相關(guān)的領(lǐng)域。這項(xiàng)技術(shù)構(gòu)成的三維掃描儀的心,所謂的飛行時(shí)間 。在以上所述的軍事手段相比,激光測(cè)距儀提供高精度的掃描能力,無(wú)論是單面或360度的掃描模式。<
71、/p><p> 已開(kāi)發(fā)的算法,合并范圍從一個(gè)單一的對(duì)象多角度檢索到完整的3-D模型產(chǎn)生盡可能少的錯(cuò)誤數(shù)據(jù)。激光測(cè)距儀提供了計(jì)算機(jī)視覺(jué)的其他方法的優(yōu)點(diǎn)之一是,計(jì)算機(jī)并不需要從兩個(gè)圖像相關(guān)的功能,以確定在深度信息的立體方法。</p><p> 計(jì)算機(jī)視覺(jué)應(yīng)用中使用的激光測(cè)距儀通常有十分之一毫米或以下的深度的決議。 利用三角或折射測(cè)量技術(shù), 激光雷達(dá)技術(shù)中使用的飛行時(shí)間,而不是可以做到這一點(diǎn)。&
72、lt;/p><p><b> 林業(yè)</b></p><p> 特殊的激光測(cè)距儀用于林業(yè) 。 這些器件具有抗葉濾波器和工作與反射 。從這個(gè)反射激光束只反映如此精確的測(cè)量距離是保證。 具有抗葉濾波器的激光測(cè)距儀用于森林資源清查的例子。</p><p><b> 體育</b></p><p> 激光測(cè)
73、距儀,可有效使用的各種運(yùn)動(dòng),需要精確的距離測(cè)量,如打高爾夫球,狩獵,射箭。一些比較流行的廠家是:公司的Opti-邏輯,布什內(nèi)爾,LaserTechnology,天寶,徠卡,新光OPTIK,尼康,施華洛世奇Optik。</p><p><b> 工業(yè)生產(chǎn)流程</b></p><p> 一個(gè)重要的應(yīng)用是利用激光測(cè)距技術(shù)在庫(kù)存管理系統(tǒng),并在鋼鐵行業(yè)生產(chǎn)過(guò)程的自動(dòng)化。&l
74、t;/p><p><b> 安全 </b></p><p> 消費(fèi)者的激光測(cè)距儀是1類(lèi)激光設(shè)備,因此被認(rèn)為是eyesafe。一些用于軍事用途的激光測(cè)距儀超過(guò)1類(lèi)激光的能量水平</p><p><b> 歷史</b></p><p> 發(fā)展現(xiàn)代印刷電路板所用的方法在20世紀(jì)初開(kāi)始。在1903年,德
75、國(guó)發(fā)明家,恒信偉業(yè),描述平面鋁箔導(dǎo)體層壓絕緣板,多層次, 托馬斯·愛(ài)迪生在1904年到麻紙電鍍導(dǎo)體的化學(xué)方法的試驗(yàn)。 阿瑟·貝里在1913年申請(qǐng)專(zhuān)利在英國(guó)印刷和蝕刻的方法,并在美國(guó)最大Schoop的獲得專(zhuān)利火焰噴涂金屬到董事會(huì)通過(guò)圖案的口罩。 查爾斯Durcase專(zhuān)利電鍍電路圖形的方法,于1927年。</p><p> 奧地利猶太工程師保羅·艾斯勒發(fā)明的印刷電路工作圍繞1936年在
76、英格蘭的一部分電臺(tái)一套。 圍繞1943年美國(guó)開(kāi)始大規(guī)模使用的技術(shù),使接近保險(xiǎn)絲在第二次世界大戰(zhàn)使用。戰(zhàn)爭(zhēng)結(jié)束后,于1948年,美國(guó)公布的發(fā)明用于商業(yè)用途。印刷電路板沒(méi)有成為消費(fèi)電子產(chǎn)品的普及,直到20世紀(jì)50年代中期,后自動(dòng)Sembly過(guò)程中被開(kāi)發(fā)的美國(guó)軍隊(duì) 。</p><p> 前印刷電路板(一會(huì)兒后,他們的發(fā)明), 點(diǎn)至點(diǎn)的建設(shè) 。為原型,或小批量生產(chǎn), 繞線或炮塔板可以更有效率。早于印刷電路的發(fā)明,類(lèi)似的
77、精神,是約翰Sargrove的1936年至1947年電子電路制造設(shè)備(ECME)噴灑到一個(gè)金屬電木塑料板。 ECME可以產(chǎn)生每分鐘3收音機(jī)。</p><p> 二戰(zhàn)期間, 近炸引信的反飛機(jī)發(fā)展需要一個(gè)電子槍發(fā)射,可以在生產(chǎn)量電路,可以承受。 全球聯(lián)盟的中心實(shí)驗(yàn)室司提交了一份提案,其中符合要求:陶瓷板將screenprinted導(dǎo)體和碳材料電阻的金屬漆。陶瓷圓盤(pán)電容器和微型真空管焊接到位。</p>
78、<p> 原來(lái),每一個(gè)電子元件引線和PCB鉆孔為每個(gè)組件的每個(gè)線。 組件的線索,然后通過(guò)孔和焊接到PCB走線。 這種組裝方法被稱(chēng)為通孔的施工 。在1949年,教育部艾布拉姆森和斯坦尼斯號(hào)丹科美國(guó)陸軍通信兵開(kāi)發(fā)過(guò)程在插入元件引線銅箔互連模式和浸焊的自動(dòng)Sembly的 。他們?cè)?956年獲得專(zhuān)利,被分配到美國(guó)陸軍。隨著層壓板的發(fā)展和蝕刻技術(shù),演變成今天在使用標(biāo)準(zhǔn)印刷電路板制造過(guò)程這一概念 可自動(dòng)完成焊接波峰焊機(jī)一石激起千層浪,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 手持激光測(cè)距儀
- 外文文獻(xiàn)翻譯——基于激光測(cè)距儀的行人跟蹤
- 外文翻譯---超聲波測(cè)距儀
- 外文翻譯超聲波測(cè)距儀
- 超聲波測(cè)距儀外文翻譯
- 外文翻譯超聲波測(cè)距儀
- 激光測(cè)距儀使用說(shuō)明
- 超聲波測(cè)距儀外文獻(xiàn)翻譯
- 長(zhǎng)距離激光測(cè)距儀評(píng)測(cè)
- 超聲波測(cè)距儀外文資料翻譯
- 外文資料翻譯---超聲波測(cè)距儀
- 超聲波測(cè)距儀系統(tǒng)設(shè)計(jì)外文翻譯
- 博士能激光測(cè)距儀操作法
- 外文文獻(xiàn)及翻譯---超聲波測(cè)距儀
- 外文文獻(xiàn)及翻譯--超聲波測(cè)距儀
- 新型相位激光測(cè)距儀的研究.pdf
- 測(cè)距儀價(jià)格
- 激光測(cè)距儀穩(wěn)定平臺(tái)設(shè)計(jì)與實(shí)現(xiàn).pdf
- 高精度激光測(cè)距儀硬件電路研究.pdf
- 手持式激光測(cè)距儀的研究.pdf
評(píng)論
0/150
提交評(píng)論