版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 文獻(xiàn)翻譯</b></p><p> TMS320LF2407, TMS320LF2406, TMS320LF2402</p><p> TMS320LC2406, TMS320LC2404, MS320LC2402</p><p> DSP CONTROLLERS</p><p>
2、The TMS320LF240x and TMS320LC240x devices, new members of the ’24x family of digital signal processor (DSP) controllers, are part of the C2000 platform of fixed-point DSPs. The ’240x devices offer the enhanced TMS320 arc
3、hitectural design of the ’C2xx core CPU for low-cost, low-power, high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated t
4、o provide a true single chip DSP controller. While code-comp</p><p> The ’240x family offers an array of memory sizes and different peripherals tailored to meet the specific price/performance points require
5、d by various applications. Flash-based devices of up to 32K words offer a reprogrammable solution useful for:</p><p> Applications requiring field programmability upgrades.</p><p> Development
6、 and initial prototyping of applications that migrate to ROM-based devices.</p><p> Flash devices and corresponding ROM devices are fully pin-to-pin compatible. Note that flash-based devices contain a 256-w
7、ord boot ROM to facilitate in-circuit programming.</p><p> All ’240x devices offer at least one event manager module which has been optimized for digital motor control and power conversion applications. Cap
8、abilities of this module include centered- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Devices with dual event managers enable
9、 multiple motor and/or converter control with a single ‘240x DSP controller.</p><p> The high performance, 10-bit analog-to-digital converter (ADC) has a minimum conversion time of 500 ns and offers up to
10、16 channels of analog input. The auto sequencing capability of the ADC allows a maximum of 16 conversions to take place in a single conversion session without any CPU overhead.</p><p> A serial communicatio
11、ns interface (SCI) is integrated on all devices to provide asynchronous communication to other devices in the system. For systems requiring additional communication interfaces; the ’2407, ’2406, and ’2404 offer a 16-bit
12、synchronous serial peripheral interface (SPI). The ’2407 and ’2406 offer a controller area network (CAN) communications module that meets 2.0B specifications. To maximize device flexibility, functional pins are also conf
13、igurable as general purpose inputs/outp</p><p> To streamline development time, JTAG-compliant scan-based emulation has been integrated into all devices. This provides non-intrusive real-time capabilities r
14、equired to debug digital control systems. A complete suite of code generation tools from C compilers to the industry-standard Code Composerdebugger supports this family. Numerous third party developers not only offer dev
15、ice-level development tools, but also system-level design and development support.</p><p> PERIPHERALS</p><p> The integrated peripherals of the TMS320x240x are described in the following subs
16、ections: </p><p> 1Two event-manager modules (EVA, EVB)</p><p> 2Enhanced analog-to-digital converter (ADC) module</p><p> 3Controller area network (CAN) module</p><p&
17、gt; 3Serial communications interface (SCI) module</p><p> 4Serial peripheral interface (SPI) module</p><p> 5PLL-based clock module</p><p> 6Digital I/O and shared pin functions
18、</p><p> 7External memory interfaces (’LF2407 only)</p><p> 8Watchdog (WD) timer module</p><p> Event manager modules (EVA, EVB)</p><p> The event-manager modules i
19、nclude general-purpose (GP) timers, full-compare/PWM units, capture units, and quadrature-encoder pulse (QEP) circuits. EVA’s and EVB’s timers, compare units, and capture units function identically. However, timer/unit n
20、ames differ for EVA and EVB. Table 1 shows the module and signal names used. Table 1 shows the features and functionality available for the event-manager modules and highlights EVA nomenclature. </p><p> Ev
21、ent managers A and B have identical peripheral register sets with EVA starting at 7400h and EVB starting at 7500h. The paragraphs in this section describe the function of GP timers, compare units, capture units, and QEPs
22、 using EVA nomenclature. These paragraphs are applicable to EVB with regard to function—however, module/signal names would differ. </p><p> Table 1. Module and Signal Names for EVA and EVB</p><p&
23、gt; General-purpose (GP) timers</p><p> There are two GP timers: The GP timer x (x = 1 or 2 for EVA; x = 3 or 4 for EVB) includes:</p><p> 1.A 16-bit timer, up-/down-counter, TxCNT, for reads
24、 or writes</p><p> 2.A 16-bit timer-compare register, TxCMPR (double-buffered with shadow register), for reads or writes</p><p> 3.A 16-bit timer-period register, TxPR (double-buffered with s
25、hadow register), for reads or writes</p><p> 4.A 16-bit timer-control register,TxCON, for reads or writes</p><p> 5.Selectable internal or external input clocks</p><p> 6.A progr
26、ammable prescaler for internal or external clock inputs</p><p> 7.Control and interrupt logic, for four maskable interrupts: underflow, overflow, timer compare, and period interrupts</p><p> 8
27、.A selectable direction input pin (TDIR) (to count up or down when directional up-/down-count mode is selected)</p><p> The GP timers can be operated independently or synchronized with each other. The compa
28、re register associated with each GP timer can be used for compare function and PWM-waveform generation. There are three continuous modes of operations for each GP timer in up- or up/down-counting operations. Internal or
29、external input clocks with programmable prescaler are used for each GP timer. GP timers also provide the time base for the other event-manager submodules: GP timer 1 for all the compares and PWM</p><p> Ful
30、l-compare units</p><p> There are three full-compare units on each event manager. These compare units use GP timer1 as the time base and generate six outputs for compare and PWM-waveform generation using pr
31、ogrammable deadband circuit. The state of each of the six outputs is configured independently. The compare registers of the compare units are double-buffered, allowing programmable change of the compare/PWM pulse widths
32、as needed.</p><p> Programmable deadband generator</p><p> The deadband generator circuit includes three 8-bit counters and an 8-bit compare register. Desired deadband values (from 0 to 24
33、81;s) can be programmed into the compare register for the outputs of the three compare units. The deadband generation can be enabled/disabled for each compare unit output individually. The deadband-generator circuit prod
34、uces two outputs (with or without deadband zone) for each compare unit output signal. The output states of the deadband generator are configurable and c</p><p> PWM waveform generation</p><p>
35、 Up to eight PWM waveforms (outputs) can be generated simultaneously by each event manager: three independent pairs (six outputs) by the three full-compare units with programmable deadbands, and two independent PWMs by
36、the GP-timer compares.</p><p> PWM characteristics</p><p> Characteristics of the PWMs are as follows:</p><p> 16-bit registers</p><p> Programmable deadband for th
37、e PWM output pairs, from 0 to 24 µs</p><p> Minimum deadband width of 50 ns</p><p> Change of the PWM carrier frequency for PWM frequency wobbling as needed</p><p> Change o
38、f the PWM pulse widths within and after each PWM period as needed</p><p> External-maskable power and drive-protection interrupts</p><p> Pulse-pattern-generator circuit, for programmable gene
39、ration of asymmetric, symmetric, and four-space vector PWM waveforms</p><p> Minimized CPU overhead using auto-reload of the compare and period registers</p><p> Capture unit</p><p&
40、gt; The capture unit provides a logging function for different events or transitions. The values of the GP timer 2 counter are captured and stored in the two-level-deep FIFO stacks when selected transitions are detected
41、 on capture input pins, CAPx (x = 1, 2, or 3 for EVA; and x = 4, 5, or 6 for EVB). The capture unit consists of three capture circuits.</p><p> Capture units include the following features:</p><p
42、> One 16-bit capture control register, CAPCON (R/W)</p><p> One 16-bit capture FIFO status register, CAPFIFO (eight MSBs are read-only, eight LSBs are write-only)</p><p> Selection of GP t
43、imer 2 as the time base</p><p> Three 16-bit 2-level-deep FIFO stacks, one for each capture unit</p><p> Three Schmitt-triggered capture input pins (CAP1, CAP2, and CAP3)—one input pin per cap
44、ture unit. [All inputs are synchronized with the device (CPU) clock. In order for a transition to be captured, the input must hold at its current level to meet two rising edges of the device clock. The input pins CAP1 an
45、d CAP2 can also be used as QEP inputs to the QEP circuit.]</p><p> User-specified transition (rising edge, falling edge, or both edges) detection</p><p> Three maskable interrupt flags, one fo
46、r each capture unit</p><p> Enhanced analog-to-digital converter (ADC) module</p><p> A simplified functional block diagram of the ADC module is shown in Figure 1. The ADC module consists of a
47、 10-bit ADC with a built-in sample-and-hold (S/H) circuit. Functions of the ADC module include:</p><p> 10-bit ADC core with built-in S/H</p><p> Fast conversion time (S/H + Conversion) of 500
48、 ns</p><p> 16-channel, muxed inputs</p><p> Autosequencing capability provides up to 16 “autoconversions” in a single session. Each conversion can be programmed to select any 1 of 16 input ch
49、annels</p><p> Sequencer can be operated as two independent 8-state sequencers or as one large 16-state sequencer (i.e., two cascaded 8-state sequencers)</p><p> Sixteen result registers (indi
50、vidually addressable) to store conversion values</p><p> Multiple triggers as sources for the start-of-conversion (SOC) sequence</p><p> S/W – software immediate start</p><p> EV
51、A – Event manager A (multiple event sources within EVA)</p><p> EVB – Event manager B (multiple event sources within EVB)</p><p> Ext – External pin (ADCSOC)</p><p> Flexible int
52、errupt control allows interrupt request on every end of sequence (EOS) or every other EOS</p><p> Sequencer can operate in “start/stop” mode, allowing multiple “time-sequenced triggers” to synchronize conve
53、rsions</p><p> EVA and EVB triggers can operate independently in dual-sequencer mode</p><p> Sample-and-hold (S/H) acquisition time window has separate prescale control</p><p> B
54、uilt-in calibration mode</p><p> Built-in self-test mode</p><p> The ADC module in the ’240x has been enhanced to provide flexible interface to event managers A and B. The ADC interface is bui
55、lt around a fast, 10-bit ADC module with total conversion time of 500 ns (S/H + conversion). The ADC module has 16 channels, configurable as two independent 8-channel modules to service event managers A and B. The two in
56、dependent 8-channel modules can be cascaded to form a 16-channel module. Figure 2 shows the block diagram of the ’240x ADC module.</p><p> The two 8-channel modules have the capability to autosequence a ser
57、ies of conversions, each module has the choice of selecting any one of the respective eight channels available through an analog mux. In the cascaded mode, the autosequencer functions as a single 16-channel sequencer. On
58、 each sequencer, once the conversion is complete, the selected channel value is stored in its respective RESULT register. Autosequencing allows the system to convert the same channel multiple times, allowing the u</p&
59、gt;<p> Figure 2. Block Diagram of the ’240x ADC Module</p><p> TMS320LF2407, TMS320LF2406, TMS320LF2402</p><p> TMS320LC2406, TMS320LC2404, MS320LC2402</p><p><b>
60、數(shù)字信號(hào)處理控制器</b></p><p> TMS320LF240x和TMS320LC240x系列芯片作為’24x系列DSP控制器的新成員,是C2000平臺(tái)下的一種定點(diǎn)DSP芯片?!?40x芯片為以’C2xx為核心CPU的增強(qiáng)型的TMS320結(jié)構(gòu)設(shè)計(jì)提供了低成本、低功耗、高性能處理能力。芯片集成了用以優(yōu)化電機(jī)數(shù)字控制應(yīng)用的一些高級(jí)外設(shè),以實(shí)現(xiàn)一個(gè)真正的單芯片DSP控制器。與現(xiàn)有的’24x DSP控
61、制芯片編碼兼容的通知,’240x系列芯片具有更好的處理能力(30 MIPS)和更高級(jí)的集成外設(shè)。</p><p> ’240x系列芯片提供一系列不同的存儲(chǔ)空間和不同的外設(shè)搭配,以滿足各種應(yīng)用中特殊的性價(jià)比要求。高達(dá)32K的FLASH存儲(chǔ)空間為以下應(yīng)用提供了可重復(fù)編程的解決方案:</p><p> 需要整體編程能力升級(jí)的應(yīng)用</p><p> 移植到基于ROM的
62、設(shè)備的應(yīng)用的開發(fā)和初始化</p><p> Flash芯片和對(duì)應(yīng)的ROM芯片引腳是完全逐一兼容的?;趂lash的芯片包含一個(gè)256字節(jié)的引導(dǎo)ROM,使在線編程十分便利。</p><p> 所有的’240x系列芯片至少提供一個(gè)用以優(yōu)化數(shù)字控制電機(jī)和電源的事件管理模塊。該模塊可以提供中間和/或邊緣排列的PWM發(fā)生器,為防止穿透型擊穿可編程死區(qū)以及同步的A/D轉(zhuǎn)換器。帶有雙事件管理器的芯片
63、一個(gè)DSP芯片就可控制多個(gè)電機(jī)和/或轉(zhuǎn)換控制器。</p><p> 高性能的十位模擬-數(shù)字轉(zhuǎn)換器(ADC)最低轉(zhuǎn)換時(shí)間是500ns,可以提供多達(dá)16通道的模擬輸入。具有自動(dòng)排序功能的ADC在一個(gè)轉(zhuǎn)換周期內(nèi)允許最多16次轉(zhuǎn)換而不增加任何CPU開銷。</p><p> 芯片內(nèi)集成了串行通信接口(SCI)以同系統(tǒng)中的其他設(shè)備進(jìn)行異步通信。對(duì)于要求額外通信接口的系統(tǒng),’2407, ’2406
64、和 ’2404芯片提供一個(gè)16位的同步串行外設(shè)接口(SPI)?!?407 和 ’2406芯片提供控制器局域網(wǎng)通信模塊,符合2.0B規(guī)范的要求。為了最大化設(shè)備的易用性,功能引腳也可配置為通用的I/O接口(GPIO)。</p><p> 為了開發(fā)的流線性,每塊芯片都集成了基于SCAN的JATG適配器,這為數(shù)字控制系統(tǒng)的調(diào)試提供了在線實(shí)時(shí)調(diào)試能力。一整套從C編輯器到工業(yè)級(jí)的代碼編譯調(diào)試器的工具支持這一系列的芯片。很多
65、第三方開發(fā)軟件不僅提供設(shè)備級(jí)的開發(fā)工具,并且支持系統(tǒng)級(jí)的設(shè)計(jì)和開發(fā)。</p><p><b> 外設(shè)</b></p><p> 對(duì)TMS320x240x系列芯片的集成外設(shè)包括:</p><p> 1.兩個(gè)事件管理模塊</p><p> 2.增強(qiáng)型模擬-數(shù)字轉(zhuǎn)換(ADC)模塊</p><p>
66、; 3.控制器局域網(wǎng)(CAN)模塊</p><p> 4.串行通信接口(SCI)模塊</p><p> 5.基于鎖相環(huán)的時(shí)鐘模塊</p><p> 6.數(shù)字輸入/輸出以及引腳復(fù)用功能</p><p> 7.外部存儲(chǔ)器接口(僅’LF2407)</p><p> 8.看門狗(WD)時(shí)鐘模塊</p>
67、<p> 事件管理器模塊(EVA,EVB)</p><p> 事件管理器模塊包括通用(GP)定時(shí)器、全比較/PWM單元、捕捉單元以及正交編碼脈沖(QEP)電路。EVA和EVB的定制器、比較單元以及捕捉單元的功能都是一致的。只是定時(shí)器和單元的名稱不同。表1列出了所用的模塊和信號(hào)的名稱,列出了事件管理器模塊的可用特征與功能,并著重講解了EVA模塊。</p><p> 事件管理
68、器A和B擁有相同的外圍寄存器。EVA的起始地址是7400h,EVB的起始地址是7500h。本節(jié)以EVA為例描述了通用(GP)定時(shí)器、比較單元、捕捉單元以及正交編碼脈沖(QEP)的功能。EVB模塊也有相同的功能,只是模塊/信號(hào)的名稱不同。</p><p> 表1 EVA與EVB的模塊與信號(hào)名稱</p><p><b> 通用定時(shí)器</b></p>&
69、lt;p> 每個(gè)事件管理模塊包含2個(gè)通用定時(shí)器:定時(shí)器x(對(duì)EVA,x=1或2;對(duì)EVB,x=3或4)包括:</p><p> 一個(gè)16位定時(shí)器、增減計(jì)數(shù)的計(jì)數(shù)器TxCNT,可讀寫</p><p> 一個(gè)16位定時(shí)器比較寄存器(雙緩沖,帶影子寄存器)TxCMPR,可讀寫</p><p> 一個(gè)16位定時(shí)器比較寄存器(雙緩沖,帶影子寄存器)TxPR,可讀
70、寫</p><p> 一個(gè)16位定時(shí)器控制寄存器TxCON,可讀寫</p><p> 可選擇的內(nèi)部或外部輸入時(shí)鐘</p><p> 用于內(nèi)部或外部時(shí)鐘輸入的可編程的預(yù)定標(biāo)器</p><p> 控制和中斷邏輯用于四個(gè)可屏蔽中斷:下溢、溢出、定時(shí)器比較和周期中斷</p><p> 一個(gè)可選擇方向的輸入引腳(TDI
71、R)(當(dāng)用雙向計(jì)數(shù)方式時(shí)用來選擇向上或向下計(jì)數(shù))</p><p> 每個(gè)GP定時(shí)器既可以相互獨(dú)立運(yùn)行,又可以同步工作。與GP定時(shí)器相關(guān)的比較寄存器既可用作比較功能,也可用于PWM波形的發(fā)生。每個(gè)GP定時(shí)器在加或加減計(jì)數(shù)時(shí)有三種連續(xù)工作的模式。每個(gè)GP定時(shí)器都擁有可編程預(yù)定標(biāo)的內(nèi)部或外部輸入時(shí)鐘。GP定時(shí)器還向事件管理器的子模塊提供時(shí)基。GP定時(shí)器1向所有比較單元和PWM電路提供時(shí)基。GP定時(shí)器2/1還向捕捉單元
72、以及正交脈沖計(jì)數(shù)操作提供時(shí)基。周期寄存器和比較寄存器的雙緩沖允許根據(jù)需要編程修改定時(shí)器的周期以及比較/PWM的脈寬。</p><p><b> 全比較單元</b></p><p> 每個(gè)事件管理器模塊包含三個(gè)全比較單元。這些單元以GP定時(shí)器1作為時(shí)基,可產(chǎn)生六路輸出用于比較和可編程死區(qū)電路的PWM波形。這六個(gè)輸出的狀態(tài)可以獨(dú)立配置。比較單元的比較寄存器是雙緩沖的,
73、允許依據(jù)需要編程控制比較/PWM的脈沖寬度。</p><p><b> 可編程死區(qū)發(fā)生器</b></p><p> 死區(qū)發(fā)生器電路包括三個(gè)8位計(jì)數(shù)器和一個(gè)8位比較寄存器,死區(qū)時(shí)間間隔(0~24 µs)可根據(jù)需要編程存入比較寄存器以控制三個(gè)比較單元的輸出。每個(gè)比較單元的死區(qū)發(fā)生器可以獨(dú)立的使能或取消。死區(qū)產(chǎn)生電路(不論是否有死區(qū)空間)對(duì)每一比較單元產(chǎn)生兩路
74、輸出。通過雙緩沖的ACTR寄存器,死區(qū)發(fā)生器的輸出狀態(tài)可根據(jù)需要配置或改變。</p><p><b> PWM波形發(fā)生器</b></p><p> 每個(gè)事件管理器可以同時(shí)產(chǎn)生多達(dá)8路的PWM波形(輸出):有可編程死區(qū)功能的三個(gè)全比較單元產(chǎn)生三對(duì)(6個(gè)輸出)獨(dú)立的波形,GP定時(shí)器比較產(chǎn)生兩個(gè)獨(dú)立的PWM波形。</p><p><b>
75、; 脈寬調(diào)制電路</b></p><p> 脈寬調(diào)制電路波形的特征如下:</p><p><b> 16位寄存器</b></p><p> 有從0到24µs的可編程死區(qū)發(fā)生器控制每一個(gè)輸出對(duì)</p><p> 最小死區(qū)寬度為50ns</p><p> 依據(jù)需要可以
76、改變PWM的載波頻率</p><p> 在每個(gè)PWM周期內(nèi)或之后可依據(jù)需要改變PWM的脈沖寬度</p><p> 外部可屏蔽的功率驅(qū)動(dòng)保護(hù)中斷</p><p> 脈沖形式發(fā)生器電路,用于可編程的對(duì)稱、非對(duì)稱以及4個(gè)空間矢量PWM波形產(chǎn)生</p><p> 自動(dòng)重裝載的比較和周期寄存器使CPU的負(fù)擔(dān)最小</p><p
77、><b> 捕捉單元</b></p><p> 此單元可采集每個(gè)事件或跳變。當(dāng)偵查到輸入引腳CAPx(對(duì)EVA,x=1、2或3;對(duì)EVB,x=4、5或6)上有與設(shè)定想通的跳變時(shí),GP定時(shí)器2的計(jì)數(shù)值會(huì)被存入一個(gè)兩級(jí)的FIFO棧中。捕捉單元由三個(gè)捕捉電路構(gòu)成。</p><p> 捕捉單元的特征如下:</p><p> 一個(gè)16位的捕
78、捉控制寄存器CAPCON(可讀寫)</p><p> 一個(gè)16位的捕捉FIFO寄存器CAPFIFO(8位MSBs只讀,8位LSBs只寫)</p><p> 以通用GP定時(shí)器2作為時(shí)基</p><p> 3個(gè)16位兩級(jí)深的FIFO,每個(gè)捕捉單元一個(gè)</p><p> 3個(gè)施密特觸發(fā)器(CAP1/2/3),每個(gè)捕捉單元一個(gè)輸入引腳。【所有
79、的輸入與內(nèi)部CPU時(shí)鐘同步,為了使跳變被捕獲,輸入必需在當(dāng)前電平保持兩個(gè)CPU時(shí)鐘周期。輸入引腳CAP1/2和CAP4/5也可用作正交編碼脈沖電路的正交編碼脈沖輸入】</p><p> 用戶可定義的跳變檢測(cè)方式(上升沿、下降沿或任意跳變)</p><p> 三個(gè)可屏蔽中斷標(biāo)志位,每個(gè)捕捉單元一個(gè)</p><p> 增強(qiáng)型模擬-數(shù)字轉(zhuǎn)換(ADC)模塊</p
80、><p> 圖2是ADC模塊的功能框圖。通過一個(gè)內(nèi)置抽樣和保持電路,ADC模塊可進(jìn)行10位ADC變換。此模塊的功能如下:</p><p> 帶內(nèi)置采樣/保持(S/H)的10位模數(shù)轉(zhuǎn)換模塊ADC</p><p> 轉(zhuǎn)換時(shí)間快(采樣/保持+轉(zhuǎn)換),金庸500ns</p><p> 16個(gè)可選擇的模擬輸入通道</p><p&
81、gt; 自動(dòng)排序功能。一次可執(zhí)行最多16個(gè)通道的“自動(dòng)轉(zhuǎn)換”,而且每次要轉(zhuǎn)換的通道都可通過編程選擇</p><p> 排序器即可當(dāng)作兩個(gè)八位的排序器,也可用作一個(gè)大的16位排序器(例:兩個(gè)級(jí)聯(lián)的八位排序器)</p><p> 16個(gè)結(jié)果寄存器(獨(dú)立編址),用以存儲(chǔ)轉(zhuǎn)換結(jié)果</p><p> 多個(gè)觸發(fā)器可以啟動(dòng)AD轉(zhuǎn)換:</p><p>
82、; S/W - 軟件立即啟動(dòng)</p><p> EVA – 事件管理器A(在事件管理器A中有多個(gè)事件源可以啟動(dòng)AD轉(zhuǎn)換)</p><p> EVB – 事件管理器B(在事件管理器B中有多個(gè)事件源可以啟動(dòng)AD轉(zhuǎn)換)</p><p> 外部 – ADCSOC引腳</p><p> 靈活的中斷控制允許在每一個(gè)或每隔一個(gè)序列結(jié)束時(shí)產(chǎn)生中斷請(qǐng)
83、求</p><p> 排序器可以工作在啟動(dòng)/停止模式,允許多個(gè)按時(shí)間排序的觸發(fā)源同步轉(zhuǎn)換</p><p> EVA和EVB各自獨(dú)立的觸發(fā)SEQ1和SEQ2(僅在雙排序模式)</p><p> 采樣和保持獲取時(shí)間窗口有獨(dú)立的預(yù)定標(biāo)機(jī)制</p><p><b> 內(nèi)置校驗(yàn)?zāi)J?lt;/b></p><p
84、><b> 內(nèi)置自測(cè)試模式</b></p><p> ’240x的ADC模塊已經(jīng)被加強(qiáng)從而為事件管理器提供了靈活的接口。ADC接口圍繞在一個(gè)快速的10位ADC模塊旁,總轉(zhuǎn)換時(shí)間為500ns(采樣/保持+轉(zhuǎn)換)。ADC模塊擁有16個(gè)通道,可配置為兩個(gè)獨(dú)立的8通道模塊以服務(wù)于事件管理器A和B。兩個(gè)獨(dú)立的8通道模塊可級(jí)聯(lián)為一個(gè)16位的模塊。表2為’240x ADC模塊的功能框圖。<
85、/p><p> 兩個(gè)8通道的模塊也可將輸入自動(dòng)排序?yàn)橐幌盗修D(zhuǎn)換。通過模擬輸入選擇器,每個(gè)模塊可選擇各自輸入的八個(gè)通道。在級(jí)聯(lián)模式,可形成一個(gè)16通道的自動(dòng)排序器。在每個(gè)排序其中,一旦轉(zhuǎn)換結(jié)束,所選擇的通道的轉(zhuǎn)換值將會(huì)被存入對(duì)應(yīng)的結(jié)果寄存器。自動(dòng)排序功能允許系統(tǒng)多次轉(zhuǎn)換同一通道,允許用戶執(zhí)行過抽樣法則。這可使傳統(tǒng)的信號(hào)抽樣轉(zhuǎn)換結(jié)果得以增強(qiáng)。</p><p> 圖2 '240x ADC模塊功
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)字信號(hào)處理外文翻譯
- 數(shù)字信號(hào)處理外文翻譯
- usb2.0主機(jī)控制器和數(shù)字信號(hào)處理器的設(shè)計(jì)研究
- 數(shù)字信號(hào)處理
- 數(shù)字信號(hào)處理
- 數(shù)字信號(hào)課程設(shè)計(jì)--數(shù)字信號(hào)處理
- 數(shù)字信號(hào)處理
- 外文翻譯--數(shù)字信號(hào)處理器重新采納多核架構(gòu)
- 數(shù)字信號(hào)處理答案
- 數(shù)字信號(hào)處理教案
- 基于數(shù)字信號(hào)控制器的智能功率單元的設(shè)計(jì).pdf
- 基于數(shù)字信號(hào)控制器的數(shù)字電源軟件設(shè)計(jì)與實(shí)現(xiàn).pdf
- 數(shù)字信號(hào)處理練習(xí)
- 數(shù)字信號(hào)處理習(xí)題
- 數(shù)字信號(hào)處理概述
- 數(shù)字信號(hào)處理試題
- 數(shù)字信號(hào)處理試卷
- 數(shù)字信號(hào)處理梳妝濾波器應(yīng)用
- 畢業(yè)論文--傳感器準(zhǔn)數(shù)字信號(hào)處理方法的研究(含外文翻譯)
- 《數(shù)字信號(hào)處理》考試大綱
評(píng)論
0/150
提交評(píng)論