版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、<p> 一種新型的移動AD HOC網(wǎng)絡跨層服務質(zhì)量模型 王磊春,陳實宏,肖坤,胡瑞敏 國家多媒體軟件工程研究的中心,,武漢大學
2、160; 武漢430072 ,中國,湖北
3、160;電子郵件: wlc2345702@163.com 摘要</p><p> 分層協(xié)議的體系結構只能為移動Ad Hoc網(wǎng)絡(簡稱MANETs )提供部分堆棧。這給移動Ad Hoc網(wǎng)絡中的多媒體通信的質(zhì)量保證帶來了很大的困難。為了改進移動Ad Hoc網(wǎng)絡中的多媒體信息傳輸?shù)姆召|(zhì)量,本文將介紹一種針對移動Ad Hoc網(wǎng)絡的跨層服務質(zhì)量模型—-CQMM。CQMM的一個核心組件是網(wǎng)絡狀態(tài)儲存庫(NSR),它是信
4、息交換的中心,而且能在堆棧中的不同協(xié)議層之間共享。同時,CQMM能夠實現(xiàn)所有標準的QoS 控制。另外,CQMM還能消除堆棧中不同協(xié)議層之間的冗余功能,并有效的執(zhí)行QoS控制和網(wǎng)絡性能的全面改善。</p><p> 關鍵字 跨層QoS模型,移動Ad Hoc網(wǎng)絡(MANETs) ,網(wǎng)絡狀態(tài)儲存庫(NSR),QoS控制。</p><p> 1、 引言隨著多媒體技術的快速發(fā)展,和個人通信帶
5、寬的增加,音頻和視頻服務已開始在MANETs中出現(xiàn)。與靜態(tài)網(wǎng)絡和因特網(wǎng)不同的是,MANETs中的多媒體通信,如音頻和視頻服務,它們對QoS的保證有非常嚴的要求,特別是延遲的保證。此外,具有不同QoS要求用戶之間的通信可以集成服務。這給MANETs.多媒體通信的QoS保證提出了很大的挑戰(zhàn)。主要有兩個原因:1 )MANETs是在一種傳統(tǒng)的無線環(huán)境下運行的,即,該環(huán)境隨時間而變化,具有不可靠的物理鏈接、廣播頻道和動態(tài)的有限的帶寬,等等。因此,
6、它只能為有嚴格QoS要求的被區(qū)分的服務提供有限的能力 [ 1 ]. 2 )由于MANETs的靈活性,多級跳以及自組性,因而,傳 統(tǒng) 的流動項目和訪問控制機制就非常難以實現(xiàn)。</p><p> 目前,我國大部分基于MANETs傳統(tǒng)的多層協(xié)議結構的QoS研究都側重于支持QoS [ 2 ]的MAC協(xié)議, QoS路由協(xié)議[ 3 ]和與QoS支持[ 4 ]適應的應用層協(xié)議,等等。但,這無法避免堆棧中不同協(xié)議層之間會出現(xiàn)
7、冗余。這會增加QoS實施的復雜性,并且給網(wǎng)絡性能的整體改進造成困難。因此,MANETs必須具備較高的處理能力。</p><p> 近年來,基于MANETs部份協(xié)議層的跨層設計得到了很大發(fā)展。 [ 1 ]提出了網(wǎng)絡層與MAC層交換信息而產(chǎn)生的異構流的機制,并有QoS保證。 [ 5,6,7,8 ]主要是研究在保證QoS的前提下,在MANETs.中如何通過少層之間的信息交換與協(xié)作而實現(xiàn)視頻通信。這些在某種程度上可以改
8、進MANETs.通信的服務質(zhì)量。然而MANETs.比有線系統(tǒng)和靜態(tài)網(wǎng)絡復雜得多,而且QoS保證的改善取決于協(xié)議棧中所有層的充分合作。因此,在MANETs.中很難設計一種能為通信與網(wǎng)絡性能的改進提供有效的QoS保證的方案。</p><p> 為了充分的利用有限的資源和MANETs整體性能的最優(yōu)化,本文將介紹一種新型的跨層QoS模型,CQMM,即不同層次可以充分交換信息,還可以執(zhí)行統(tǒng)一的QoS管理和控制。
9、0;</p><p> 本文剩下內(nèi)容將作如下安排: 第2部分仔細介紹CQMM。第3部分,我們將通過與DQMM的對比來分析CQMM。第4部分將對全文給與總結。</p><p><b> .</b></p><p> 移動AD HOC網(wǎng)絡跨層服務質(zhì)量模型--CQMM2.1 CQMM結構目前,在移動AD HOC網(wǎng)絡中大部分的QoS研究都是基
10、于傳統(tǒng)的分層協(xié)議架構,支持QoS的信號和算法是在不同層次分別地設計和實施的。例如,在數(shù)據(jù)鏈路層[ 9 ]的支持QoS的MAC協(xié)議,在網(wǎng)絡層[ 10.11 ] 支持QoS路由協(xié)議,等等。它可以被歸納為一個移動AD HOC網(wǎng)絡多層次的QoS模型, DQMM(見圖1 ) 。 </p><p> 在DQMM中 ,協(xié)議棧里的不同層設計是獨立設計與工作的。在邏輯上相鄰的不同層之間只有靜態(tài)的接觸;每個協(xié)議層有一定的QoS的,
11、如在邏輯鏈路層誤差控制,網(wǎng)絡中的擁塞控制等。一方面, DQMM可以極大簡化MANETs設計,并增加了高可靠性和擴展性的協(xié)議。另一方面, DQMM也有一些不足之處: 1) 由于不同的協(xié)議層間獨立設計,因此堆棧中不同協(xié)議層會存在功能上的冗余。2 ) 由于邏輯上不相鄰的層與層之間信息交換十分困難,從而引起了在統(tǒng)一的管理,QoS控制,網(wǎng)絡性能的改善方面的許多問題。</p><p><b> Fig 2<
12、;/b></p><p> 因此,當試圖最優(yōu)化MANETs.各層的性能時,有必要把更多地注意力集中物理層、數(shù)據(jù)鏈路層、網(wǎng)絡層和較高的層之間的協(xié)作。為此,我們結合分散在不同層次參數(shù),設計了一種新型的跨層QoS模型, CQMM,以改善QoS保證和網(wǎng)絡的整體性能。CQMM的結構如圖2 圖2</p><p> 從圖2 ,我們可以看出CQMM保持了堆棧中每個協(xié)議層的核心功能和相關獨立性
13、,為保持模塊機構的優(yōu)勢,它還允許邏輯上相鄰的兩個層之間的直接信息交換。在這些基礎上,CQMM還增加了一個核心組件,網(wǎng)絡狀態(tài)儲存庫(簡稱 NSR)。NSR是核心,通過它,不同層之間可以充分地交換和共享信息。一方面,通過NSR,每個協(xié)議層能夠知道其它協(xié)議層的狀態(tài)信息,并決定自己的功能與執(zhí)行機制。另一方面,每個協(xié)議層在NSR上注明自己的狀態(tài)信息以供協(xié)議棧的其它層查詢。在CQMM,邏輯上相鄰的協(xié)議層之間通過NSR可以直接或間接的交換信息,而那些
14、邏輯上不相鄰的協(xié)議層之間通過NSR用跨層的方法也可以交換信息。因此,在CQMM中,信息交換是非常靈活的。</p><p> CQMM的各種QoS控制都不是獨立的進行的,如網(wǎng)絡資源管理和調(diào)度、網(wǎng)絡壽命、差錯控制、擁塞控制和性能優(yōu)化等。與此相反, 通過堆棧中各協(xié)議層之間的協(xié)作,CQMM負責統(tǒng)一管理和所有QoS控制。MANETs中的每個QoS控制與協(xié)議棧的所有層都相關,同時也受到它們的限制。QoS操作和管理的所有結果
15、都要反饋給所有的層,并寫進NSR成為MANETs.所有QoS控制的參數(shù)。</p><p><b> 2.2的協(xié)議設計</b></p><p> CQMM協(xié)議設計著眼于各協(xié)議層之間信息的自由、充分交換和協(xié)作不會出現(xiàn)功能上的冗余,同時又能保持各協(xié)議層之間的相關獨立性和模結構的優(yōu)勢。</p><p> 物理層:物理層負責數(shù)據(jù)的調(diào)制,傳輸與接收,
16、同時也決定MANETs各節(jié)點大小、成本和能源消耗。在CQMM ,物理層的設計是根據(jù)執(zhí)行成本,能量的大小和限制,以及高層的QoS要求,選擇低成本,低耗能,低復雜度和大信道能力的傳輸介質(zhì)、頻率范圍、調(diào)制算法。</p><p> 數(shù)據(jù)鏈路層:該層處于協(xié)議棧是低層,可分為兩個子層:邏輯連接子層和MAC子層。相對于高層,數(shù)據(jù)鏈路層可以較早感知MANETs中的網(wǎng)絡狀態(tài),如頻道質(zhì)量更改,網(wǎng)絡擁塞等。因此,一方面是數(shù)據(jù)鏈路層能
17、夠執(zhí)行基本QoS的控制,如誤差控制和交流頻道管理。另一方面,可以與高層次相互結合,建立、選擇和維護更快速度的路由,較早預防網(wǎng)絡阻塞,并為傳輸層選擇適當?shù)膫鬏敊C制和控制戰(zhàn)略。</p><p> 網(wǎng)絡層:CQMM網(wǎng)絡層協(xié)議的設計和實施是為了建立,選擇,維持適當?shù)穆酚?,同時考慮路由中每個節(jié)點的耗能,高速緩存和可靠性。QoS需要較高層的服務,如帶寬、延遲,較低層次的實施策略,如邏輯連接子層的錯誤控制機制,物理層子層的頻
18、道管理的方法。</p><p> 傳輸層:CQMM傳輸層協(xié)議的設計需要同時考慮低層的功能與執(zhí)行機制,如數(shù)據(jù)鏈路層的錯誤控制方法,網(wǎng)絡層路由的建立、選擇、維持的方法,決定相應傳輸策略的來至應用層的QoS要求。。</p><p> 應用層:有兩種不同的應用層設計策略: 1 )區(qū)分服務:按照各低層次所提供的職能劃分為不同的優(yōu)先等級。2 )應用智能設計:分析不同應用程序的具體要求,如帶寬,時延
19、和twitter時延等,然后根據(jù)協(xié)議棧各層的要求分配和執(zhí)行相應的功能。</p><p> 2.3 CQMM 的QoS合作與管理</p><p> QoS合作和管理的核心是作為協(xié)議棧里信息狀態(tài)交流和共享中心的NSR,通過不同協(xié)議層之間網(wǎng)絡狀態(tài)的充分交流與共享,網(wǎng)絡資源的管理和調(diào)度,以及網(wǎng)絡性能的整體優(yōu)化都能夠有效地實現(xiàn)。其中包括網(wǎng)絡資源的管理與調(diào)度,跨層QoS 協(xié)作和網(wǎng)絡性能的整體優(yōu)化
20、。</p><p> 網(wǎng)絡資源的管理和調(diào)度:網(wǎng)絡資源包括各種資源,例如高速緩存,每一個節(jié)點能力和隊列,節(jié)點之間的通信頻道,等等。在CQMM中,為了增加各種通信QoS,網(wǎng)絡資源的管理和調(diào)度并不是統(tǒng)一的,有限的資源也不是完全利用的。</p><p> QoS的合作和控制:在CQMM中 ,各種QoS的控制和合作,例如,比率調(diào)整,延遲保證和擁塞控制等,都并不是由各層單獨實現(xiàn)的,而是協(xié)議棧各層相
21、互協(xié)作完成的。舉例來說,通過個協(xié)議層的協(xié)作,如物理子層的ACK,網(wǎng)絡層的路由信息、包的丟失率和延時,傳輸層的比率調(diào)整信息等等,MANETs的擁塞可以較早地被預防和控制。</p><p> 性能優(yōu)化:在CQMM中 ,網(wǎng)絡性能的優(yōu)化主要目的是建立一個由協(xié)議結構所有層制約的網(wǎng)絡優(yōu)化模型,并根據(jù)這個模型找到一種能夠改進MANETs整體新能的方法。</p><p> 3 CQMM分析 目前MA
22、NETs 的QoS模型可被歸為兩類,一類是基于傳統(tǒng)層劃分結構的DQMM,另一類是本文介紹的跨層QoS模型CQMM。[ 1,5-8 ] 所使用的QoS模型本質(zhì)上只是在DQMM基礎上一定程度的拓寬。在這里,我們只是比較CQMM與DQMM。 </p><p> 3.1信息交流CQMM 與DQMM協(xié)議體系和原則的不同在信息交流的方式,頻率,時間,需求也存在很大的區(qū)別。(見表1 ) </p><p
23、> 從表1中可以看出,與DQMM比較 ,CQMM有許多優(yōu)點: 1 )更靈活的信息交流 。相鄰層可以通過層或NSR之間的接觸交換信息,交叉層也可以通過NSR交換信息。2 )更簡單的信息格式變換。不同層之間通過NSR可以交換信息,因此這些層只需要處理層與NSR之間的格式轉換問題。3 )更低的要求。協(xié)議層可以從臨時存在NSR中的不同協(xié)議層適時信息讀取它們,因此信息改變的層不必要及時保持同步4 )更精確地控制。在CQMM中,NSR存儲了
24、不同層某些時候的信息,這樣更利于準確地掌握網(wǎng)絡狀態(tài)和管理網(wǎng)絡。3.2 Protocol Design </p><p><b> .</b></p><p> 3.2協(xié)議設計在DQMM 中,由于功能和協(xié)議設計上的相互獨立性,各層之間在執(zhí)行可靠的信息傳輸時不可避免的會出現(xiàn)一些功能上的榮譽。不過,CQMM可以在不同的層之間執(zhí)行統(tǒng)一的功能分配,并且能通過各層協(xié)作支持的
25、QoS實現(xiàn)通信。</p><p> 表1.CQMM與DQMM之間信息交換的對比</p><p> 3.3網(wǎng)絡資源和性能優(yōu)化的管理和調(diào)度</p><p> 不同協(xié)議層之間缺乏充分的信息交流限制了DQMM網(wǎng)絡性能的整體改進。在DQMM中,通過NSR,協(xié)議棧里不同層之間能夠自由、充分地交換信息,有利于網(wǎng)絡資源統(tǒng)一的規(guī)劃和調(diào)度,在整個網(wǎng)絡的基礎上建立性能優(yōu)化模型,并做
26、好網(wǎng)絡性能整體改善。</p><p> 3.4執(zhí)行議定成本和復雜性由于棧里每個協(xié)議層的相互獨立性,不同協(xié)議層之間只有較少的接觸與信息的交流,因此DQMM需要較低的層本于復雜度。在CQMM中,棧中不同協(xié)議層之間自由、充分地交換信息需要:每個節(jié)點上上必須增加一個網(wǎng)絡狀態(tài)存儲器,并提供替代策略以及時更新狀態(tài)信息;在每個協(xié)議層和NSR交換信息的地方增加接口;建立更復雜的數(shù)學模型和控制機制以優(yōu)化網(wǎng)絡性能。這些都會導致C
27、QMM中執(zhí)行成本和復雜度的增加。</p><p> 相比DQMM ,CQMM能夠為協(xié)議棧里的不同層提供自由和充分的信息交流,消除不同層之間的功能冗余,更好的實現(xiàn)網(wǎng)絡資源的管理域調(diào)度,使MANETs.的整體性能最優(yōu)化。但這些優(yōu)勢都是高成本和高復雜度為代價的</p><p> 4 .結論和未來工作 本文為MANETs.提供了一種新的跨層QoS模型,CQMM。相比DQMM ,
28、 CQMM有以下優(yōu)點: 1 )通過NSR,協(xié)議棧中不同層可以自由、充分地交換信息。 2 ) CQMM.可以消除協(xié)議棧中不同層之間的功能冗余層協(xié)議棧,并更好地執(zhí)行網(wǎng)絡資源統(tǒng)一管理和調(diào)度和網(wǎng)絡性能的整體改善。基于CQMM的框架,今后的工作將側重于跨層協(xié)議的設計,跨層控制與QoS合作,用跨層的方法對MANETs性能的整體改善。</p><p><b> 5. 參考文獻</b></p>
29、<p> 【1】L.Wei,X.Chen 等等,“內(nèi)涵:支持區(qū)分在Ad Hoc網(wǎng)絡中的多次反射移動”,移動計算,IEEE事物處理,2004.3(4):380-393.</p><p> 【2】G..Ahn,A.T. 坎貝爾等等,“本地多級無線網(wǎng)絡確認支持服務”,美國電氣及電子工程師學會全球電訊會議2003,洛杉磯,CA,USA,Dec.2003。</p><p> 【3
30、】G.Mohsen,無線通訊系統(tǒng)和網(wǎng)絡,2004</p><p> 【4】G..Andrea, 無線通訊,劍橋大學出版社,2004</p><p> 【5】W.Kumwilaisak , Y.T.Hou, 等等,一個跨層的品質(zhì)服務映射架構的視頻在無線網(wǎng)絡中的傳輸。</p><p> 【6】Eric Setton,T.Yoo,等等, 跨層設計的Ad Hoc網(wǎng)絡實
31、時視頻流,無線通訊,美國電氣及電子工程師學會,2005,12(4):59-65.</p><p> A Novel Cross-layer Quality-of-service Model</p><p> For Mobile AD hoc Network</p><p> Leichun Wang, Shihong Chen, Kun Xiao, Ruim
32、in Hu</p><p> National Engineering Resarch Center of Multimedia Software, WuhanUniversity</p><p> Wuhan 430072, Hubei ,china</p><p> Email:wlc2345702@163.com</p><p>
33、<b> Abstract</b></p><p> The divided-layer protocol architecture for Mobile ad hoc Networks(simply MANETs)can only provide partial stack. This leads to treat difficulties in QoS guarantee of mu
34、ltimedia information transmission in MANETs, this paper proposes Across-layers QoS Model for MANETs, CQMM. In CQMM ,a core component was added network status repository(NSR), which was the center of information exchange
35、and share among different protocol layers in the stack. At the same time,CQMM carried out all kinds of unified </p><p> Keyword Cross-layers QoS Model, Mobile Ad hoc Networks(MANETs);Network Status Reposit
36、ory(NSR) QoS Controls.</p><p> 1 introduction</p><p> With the rapid development of multimedia technologies and the great increase of he bandwidth for personal communication,video and Video se
37、rvices begin to be deployed in MANETs. Different from static networks and Internet,multimedia communications in MANETs such as Voice and Video services require strict QoS guarantee, especially the delay guarantee. In add
38、ition, communication among different users can be integrated services with different QoS requirements. These lead to great challenges in QoS g</p><p> At present, most researches on QoS based on traditional
39、 divided-layer protocol architecture for MANETs focus on MAC protocol supporting QoS[2],QoS routing protocol [3] and adaptive application layer protocol with QoS support[4], and so on. It is avoidless that there will be
40、some redundancies on functions among the different protocol layers in the stack. This will increase the complexity of QoS implementation and cause some difficulties in overall improvement on the network performances. The
41、refor</p><p> In recent years, the cross-layers design based on the partial protocol layers in MANETs was put forward.[1] proposed the mechanism with QoS guarantee for heterogeneous flow MAC layer.[5,6,7,8]
42、 did some researches on implementing video communication with QoS guarantee by exchange and cooperation of information among a few layers in MANETs. These can improve QoS in MANETs’ communication to some extent. However,
43、 MANETs is much more complex than wired system and static network, and improvements on Q</p><p> To make good use of limited resources and optimize overall performances in MANETs, this paper proposes a nove
44、l cross-layer QoS model, CQMM, where different layers can exchange information fully and unified QoS managements and controls can be performed.</p><p> The rest of the paper is organized as follows. CQMM is
45、 described in section 2 in detail. In section 3,we analyze CQMM by the comparison with DQMM..The section 4 concludes the paper.</p><p> 2. A CROSS-LAYER QOS MODEL FOR MANETS-CQMM</p><p> 2.1 A
46、rchitecture of CQMM</p><p> In MANETs, present researches on QoS are mostly based on traditional divided-layer protocol architecture, where signals and algorithms supporting QsS are designed and implemented
47、 in different layers respectively, such as MAC protocol supporting QoS in data link layer [9], routing protocol with QoS support in network layer[10.11],and so forth. It can be summarized as A Divided-layer QoS Model for
48、 MANETs, DQMM (see fig.1).</p><p> In DQMM, different layers in the protocol stack are designed and work independently; there are only static interfaces between different layers that are neighboring in logi
49、c; and each protocol layer has some QoS controls such as error control in logic link layer, congestion control in network, etc. On the one hand, DQMM can simplify the design of MANETs greatly and gain the protocols with
50、high reliability and extensibility. On the other one, DQMM also has some shortcomings: ) due to the independe</p><p> Fig..1 </p><p> Therefore, it is necessary that more attention a
51、re focused on the cooperation among physical layer data link layer, network layer and higher when attempting to optimize performances of each of layer in MANETs. For this reason, we combine parameters dispersed in differ
52、ent layers and design a novel cross-layer QoS model, CQMM, to improve the QoS guarantee and the overall network performances. The architecture of CQMM is provided in fig 2</p><p><b> Fig 2</b>&l
53、t;/p><p> From fig.2 ,it can be seen that CQMM keeps the core functions and relative independence of each protocol layer in the stack and allows direct information exchange between two neighboring layers in l
54、ogics to maintain advantages of the modular architecture .On the basic of these , a core component is added in CQMM, Network Status Repository (simply NSR).NSR is the center, by which different layers can exchange and sh
55、are information fully. On the one hand, each perotocol layer can read the status </p><p> All kinds of QoS controls in CQMM such as management and scheduling of network resources, network lifetime, error co
56、ntrol, and congestion control and performance optimization and so on, are not carried out independently. On the contrary, CQMM is in charge of the unified management and all QoS controls by the cooperation among differen
57、t protocol layers in the stack. Each QoS control in MANETs is related to all layers in the protocol stack, and also constrained by all layers in the stack. The resu</p><p> 2.2 protocol design in CQMM </
58、p><p> In CQMM, the protocol designs aims at the full and free information exchange and cooperation among different protocol layers to avoid possible redundancy functions when maintaining the relative independ
59、ence among different layers and the advantages of the modular architecture.</p><p> Physical layer: Physical layer is responsible for modulation , transmission and receiving of data ,and also the key to th
60、e size, the cost and the energy consumption of each node in MANETs. In CQMM,the design of physical layer is to choose the transmission media, the frequency range and the modulation algorithm wit the low cost, power and c
61、omplexity, big channel capability and so on, according to the cost of implementation, energy constraint, and capability and QoS requirements from high layer.</p><p> Data link layer: The layer is low layer
62、in the protocol stack and can be divided into two sub-layers: logic link sub-layer and MAC sub-layer. Compared with high layers, data link layer can sense network status in MANETs earlier such as the change of channel qu
63、ality, the network congestion and so on. Therefore, on the one hand data link layer can perform the basic QoS controls such as error control and management of communication channel. On the other one, the layer can be com
64、bined with high laye</p><p> Network layer: The design and implementation of network layer protocol in CQMM is to establish, choose and maintain appropriate routings by taking into consideration the power,
65、the cache, the reliability of each node in a routing. QoS requirements of services from high layer such as the bandwidth and the delay, and implementation strategies of error control in logic link sub-layer and the way o
66、f the channel management in MAC sub-layer.</p><p> Transport layer: In CQMM , the protocol design of transport layer needs to be aware of both functions and implementation mechanism of lower layers such as
67、 the way of error control in data link layer , the means to establish, choose and maintain routing in the network layer, and QoS requirements from the application layer, to determine corresponding transmission strategies
68、. In addition, the transport layer also needs to analyze all kinds of events from low layers such as the interrupt and change</p><p> Application layer: There are two different strategies in the design of t
69、he application layer:1)differentiated services. According to the functions provided by the low layers applications are classed as the different ones with different priority levels. 2) Application-aware design. Analyze sp
70、ecific requirements of different applications such as the bandwidth, the delay and the delay twitter and so on, and then assign and implement the functions for each layer in the protocol stack according to th</p>
71、<p> 2.3 QoS Cooperation and Management in CQMM</p><p> In CQM, the core of QoS cooperation and management is that NSR acts as the exchange and share center of status information in protocol stack, an
72、d by the full exchange and share of network status among different protocol layers the management and scheduling of the network resources and the overall optimization of the network performances can be implemented effect
73、ively. The management and scheduling of the network resources, the cross-layer QoS cooperation and the overall optimization of the netw</p><p> Management and scheduling of network resources: Network resou
74、rces include all kinds of resources such as the cache, the energy and the queue in each node, and the communication channel among nodes and so froth. In CQMM, the management and scheduling of the network resources are no
75、t to the unified management and scheduling of the network resources and full utilization of limited resources in order to increase the QoS of all kinds of communication.</p><p> QoS cooperation and control:
76、 In CQMM, all kinds of QoS controls and cooperation such as the rate adaptation, the delay guarantee and the congestion control and so on, are not implemented by each layer alone, but completed through the operation of a
77、ll layers in the protocol stack. For example, the congestion in MANETs can be earlier prevented and controlled by the cooperation among different layers such as ACK from MAC sub-layer, the routing information and the los
78、s rate and delay of package from</p><p> Performances Optimization: In CQMM, the optimization of the network performances aims to establish a network optimization model constrained by all layers in the prot
79、ocol architecture and finds the “best” ways according to the model in order to improve the overall performances in MANETs.</p><p> 3ANALYSIS OF CQMM</p><p> Present QoS models for MANETs can m
80、ainly be classed as a QoS model based on traditional divided-layer architecture DQMM and a cross-layer QoS model proposed by this paper CQMM. QoS model used by [1,5-8] is to some extent extended on the basis of DQMM in n
81、ature. Here,. We only compare CQMM with DQMM</p><p> 3.1 Information Exchange </p><p> Different protocol architecture and principle between CQMM lead to great differences in the means, the fr
82、equency, the time and the requirement of the information exchange,(see table 1)</p><p> From Table 1, it can be seen that compared wit DQMM CQMM has some advantages:1) more flexible information exchange,. N
83、eighboring layers can information by the interfaces between layers or NSR, and crossing layers may exchange information through NSR; 2) simpler transform in information format. Different layers can exchange information b
84、y NSR, so these layers only need to deal with the format transform between the layers and NSR;3)lower requirements. The protocol layers can read them in proper ti</p><p> 3.2 Protocol Design </p><
85、;p> In DQMM, it is inevitable that there are some redundancy functions among different protocol layers for implementing reliable information transmission because of the independence in function and protocol design. H
86、owever, CQMM can perform unified function assignation among different layers and implement communication with QoS support by the cooperation among the different layers.</p><p> Table 1. Comparisons of infor
87、mation exchange between CQMM and DQMM</p><p> 3.3 management and scheduling of network resources and performances optimization </p><p> The lack in full information exchange among different p
88、rotocol layers in the stack limits the overall improvements on the network performances in DQMM. In the protocol stack can exchange information freely and fully through NSR. Which benefits unified planning and scheduling
89、 of the network resources establishing performance optimization model based on the whole network, and performing the overall improvements on the network performances.</p><p> 3.4 cost and complexity of impl
90、ementing protocols </p><p> Due to the independence of each protocol layer in the stack, there are less interfaces and information exchange among different layers protocol layers of the stack requires: add
91、NSR in each node to store network status and provide replacing strategies to u date status information in time; increase interfaces where each protocol layer and NSR exchange information; establish more complex mathemati
92、cs model and control mechanism to optimize network performances. There lead to the increase of the imp</p><p> Compared with DQMM, CQMM can provide free and full information exchange for different layers in
93、 the protocol stack, eliminate redundancy functions among the different layers, better realize the management and scheduling of the network resources, and optimize overall performances in MANETs. There advantages are at
94、the cost of higher cost and complexity.</p><p> 4. conclusions and future work</p><p> This paper provides a new cross-layer QoS model for MANETs,, CQMM. Compared with DQMM, CQMM has the foll
95、owing advantages:1) different layers in the protocol stack can exchange information freely and fully through NSR:2) CQMM layers in the protocol stack, and better implement different unified management and scheduling of t
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯----一種新型的移動ad hoc網(wǎng)絡跨層服務質(zhì)量模型
- 電子信息外文文獻翻譯---一種新型的移動ad hoc網(wǎng)絡跨層服務質(zhì)量模型
- 一種無線Ad-Hoc網(wǎng)絡跨層服務發(fā)現(xiàn)協(xié)議研究.pdf
- 一種移動Ad Hoc網(wǎng)絡下的服務管理機制.pdf
- 一種新型的ad hoc網(wǎng)絡分群路由協(xié)議.pdf
- 一種向量受限Ad Hoc網(wǎng)絡移動模型研究與性能評價.pdf
- 外文翻譯ad_hoc網(wǎng)絡的一個簡要概述挑戰(zhàn)與研究方向
- 移動ad hoc網(wǎng)絡中跨層聯(lián)合調(diào)度的研究.pdf
- Ad Hoc網(wǎng)絡中基于概率優(yōu)先的服務質(zhì)量保障模型研究.pdf
- 計算機專業(yè)外文翻譯--計算機
- 計算機專業(yè)外文翻譯---網(wǎng)絡目標
- 一種穩(wěn)定的基于權重的移動Ad Hoc網(wǎng)絡路由協(xié)議.pdf
- 移動Ad Hoc網(wǎng)絡關于路由和跨層技術的研究.pdf
- 移動Ad hoc網(wǎng)絡中一種改進的加權分群算法研究.pdf
- 野戰(zhàn)移動Ad_Hoc網(wǎng)絡認證與安全路由研究.pdf
- 移動Ad Hoc網(wǎng)絡移動模型的研究.pdf
- ad_hoc網(wǎng)絡aodv路由協(xié)議算法設計
- 外文翻譯--一種新型的基于web的在線考試系統(tǒng)的計算機科學教育
- Ad Hoc網(wǎng)絡移動模型的研究.pdf
- 基于Ad Hoc網(wǎng)絡的跨層優(yōu)化設計.pdf
評論
0/150
提交評論