版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、<p><b> 英文原文</b></p><p> Utilisation of Data Mining in Mining Industry:</p><p> Improvement of the Shearer Loader Productivity in Underground Mines</p><p> I. I
2、NTRODUCTION</p><p> The longwall system is the heart of the coal mining process. It is considered to have a simple layout but requires stringent adherence to some basic features in the development of the pa
3、nel to make it work. Similarly, in order to produce the required business production volume, all critical equipments must operate to their required level of service according to the system’s established operating mission
4、 profile. The integrated nature of production system demands that all units or sub-systems sho</p><p> increasing failure rate of the overall system. This unreliable condition only holds true in the absence
5、 of correct and auditable strategic maintenance and reliability policy, management systems and procedures in place. In this industrial case a substantial amount of time is being put together to systematically extract the
6、 appropriate data and analyse a few factors. The factors include the cause of failure, current maintenance regime, maintenance system and procedures, quality of computerised equ</p><p> shortcomings.</p&
7、gt;<p> The goal of this study is to develop a procedure to optimize maintenance plan for the Shearer Loader that would minimize costly production losses and improve reliability. The program is to consider long-t
8、erm plant operation (with possible equipment life extension) by continuing with processes that have provided excellent past performance, proceeding with existing maintenance improvement programs, and recommend new cost e
9、ffective maintenance task.</p><p> This study aimed at achieving the following objectives to drive delivery of the end goal:</p><p> 1) To identify a cost-effective maintenance strategy by rev
10、iewing, rationalising and optimising existing maintenance task.</p><p> 2) Apply design methodology in order to increase the level of service from its current performance; improve life cycle cost and reliab
11、ility of the Shearer over its design mission life.</p><p> 3) To develop guidelines for operation and maintenance integration</p><p> 4) Identify effective means of recording and utilising mea
12、ningful reliability data for performance analysis.</p><p> 5) Ensure plant equipment is maintained appropriately byconsidering its importance to safety, reliability, and availability.</p><p>
13、The study also highlighted the significance of risk based assessment methodology such as FMEA/FMECA, Planned Maintenance Optimisation (PMO). The practice and principles of reliability and maintainability modelling has pr
14、oven to generate increased profitability among world leader in mining industry. This method was found useful as an effective planning and operational tool for automatic and highly complex mine production system while emp
15、loying almost without redundancy high cost critical equipmen</p><p> II. THE FUNCTION OF THE SHEARER LOADER</p><p> The shearer loader installed in the underground mining is a Double Ended Ran
16、ging Drum Shearer (DERDS) equipped with outboard ranging arms. It is designed and manufactured to extract and load coal into the Armoured Face Conveyor which is also a critical integral part of the longwall mining system
17、. The Shearer operates within a minimum seam range of 1.8 metres and a maximum of 3.0 metres with an undercut of not less than 150mm with a 1000mm web. The Shearer is also capable of both Half Web and Bi-</p><
18、p> Longwall, in a 40 week operating year, with a weekly average of 100,000 tonnes. This operating schedule allows for two Longwall moves per year. The Shearer Loader is expected to achieve the equipment availability
19、of not less than 98% of any given month, when operated 5-days a week (106 hours per week). Figure 1 shows the major components of the shearer loader.</p><p> III. RELIABILITY ISSUES AND RISK ASSESSMENT METH
20、ODOLOGY</p><p> The shearer failed to meet the availability performance target within the period due to several preventable failure modes that causes business interruptions. A SWOT analysis that was conduct
21、ed from the start of this study shows the following factors directly impacting the shearer performance;</p><p> 1. Planning and scheduling done in ad-hoc basis</p><p> 2. Equipment hierarchy l
22、imited to high level and does not capture failure modes to its component and sub-system component</p><p> 3. Compliance to maintenance schedule is inconsistent</p><p> 4. Poor data utilisation
23、</p><p> 5. Backlog not measured</p><p> 6. Work order package incomplete (SWMS, JSA, drawings, BOM,etc.)</p><p> A reliability analysis and comprehensive Failure Mode Effect and
24、 Criticality (FMECA) were carried out to identify failure rates of individual critical maintainable items and failure modes. The outcome of this process concluded with chronic reappearance of the same failed maintainable
25、 items caused by the same failure modes and failure mechanism that is causing the loss of its function. A Pareto analysis was used to identify a list of problems, using criteria of highest total revenue loss, breakdo<
26、/p><p> relationships govern everything that happens and as such are the path to effective problem solving [5]. This cause and effect relationship identifies failure modes highlighted in in the FMECA process.
27、Furthermore, additional business interruption is also driven by other cause factors with the most number of downtime as follows:</p><p> 1.Electrical system failure</p><p> 2.Control and monit
28、oring system failure</p><p> 3.Mechanical haulage failure</p><p> IV. FIELD DATA COLLECTION & FEEDBACK</p><p> Data collection from the field and on-line monitoring system mu
29、st be accurate and realistic. It provides a starting point of generating formal failure-reporting document and ensures that the feedback is both consistent and adequate [6]. PULSE is a Computerised Maintenance Management
30、 System (CMMS) used currently in the underground mine. It is a central database and a depository of all pertinent data relating to the Plant Register.</p><p> The system is capable of providing the followin
31、g information:</p><p> 1.Work order type and priority</p><p> 2.Selecting maintenance type</p><p> 3.Raising requisition from work order</p><p> 4.Equipment informa
32、tion and Bill of Materials (BOM)</p><p> 5.Equipment history</p><p> 6.Suppliers information and cost reporting</p><p> 7.Estimates (time and labour information)</p><p
33、> 8.Real time capture of the operating time of the asset in a 24-hours/day</p><p> The system also provides links to other critical information to effectively carry out the required work such as:</p&
34、gt;<p> 1.Job plans/ Standard works</p><p> 2.Safe work procedures</p><p> 3.Work Permits</p><p> 4.Risk assessment</p><p> 5.Drawings and other technical r
35、eferences</p><p> The software organises the equipment hierarchy starting from the Plant Register level and extending:</p><p> 1.Two levels downwards, to Sub-Assembly and Component;</p>
36、<p> 2.Two levels upwards, to Plant Group and Site Code.</p><p> Outside the Plant Hierarchy, PULSE uses a user defined key field,"Location", which is intended to indicate the equipment’s p
37、hysical location within the site’s boundaries.</p><p> V. CONCLUSION</p><p> The global trend in longwall coal mining production system is towards ever increasing productivity with the least o
38、perating and maintaining cost possible. This trend is reflected nowhere better than in the increasing production expectations from the existing longwall installation and the next generation of longwall installation. Subs
39、equently, the demand for the shearer loader to increase longwall production is accompanied by the increased in the level of service and high level of automation to e</p><p><b> 中文譯文</b></p>
40、;<p><b> I.介紹</b></p><p> 長壁煤炭開采過程中系統(tǒng)的心臟。它被認為是有一個簡單的布局,但需要嚴格遵守的面板,使其工作在發(fā)展的一些基本特征。同樣,以產(chǎn)生所需的業(yè)務產(chǎn)量,所有關鍵設備必須工作到他們所需的服務級別,根據(jù)系統(tǒng)的建立工作任務剖面。生產(chǎn)系統(tǒng)的綜合性質(zhì),要求所有單位或子系統(tǒng)應該能夠在可接受的水平,可靠性,實現(xiàn)計劃生產(chǎn)。高生產(chǎn)力的井下長壁開采設備
41、是非常昂貴的,它需要適當?shù)脑u估每個組件的維護管理可維護性。希勒用于在工作面的煤炭,其故障是災難性的財務條款。因此,它的可用性是一個必須為經(jīng)濟的可持續(xù)發(fā)展項目。如果采煤機不能有效地工作,這可能會降低效率的整個生產(chǎn)體系[1]。煤炭年產(chǎn)量400萬噸的目標在高度機械化采煤機的情況下,建立了實現(xiàn)全年收入目標。要做到這一點的生產(chǎn)力水平,采煤機預計在106小時,每星期工作在40周營運年度,并允許在一年內(nèi)只有兩個工作面移動。這種緊密的目標似乎是不現(xiàn)實的
42、,考慮到目前的增加了整個系統(tǒng)的故障率。這種靠不住的情況缺乏正確和可審計的戰(zhàn)略維護和可靠性的政策,管理制度和程序,只有擁有真正的。在這個工業(yè)的情況下,大量時間被放在一起,系統(tǒng)中提取相應的數(shù)據(jù),并分析了幾個因素。這些因素包括失敗的原因,目前的保</p><p> 這項研究的目標是開發(fā)一個程序來優(yōu)化維修計劃,采煤機,將最大限度地減少昂貴的生產(chǎn)損失,提高供電可靠性。該計劃是要考慮長期的工廠操作(有可能會導致設備壽命延長
43、),通過持續(xù)的過程,提供了優(yōu)異的過往表現(xiàn),繼續(xù)與現(xiàn)有的維修改進方案,并建議新的成本有效的維護任務。</p><p> 本研究旨在實現(xiàn)以下目標驅(qū)動交付的最終目標:</p><p> 1)要找出一個符合成本效益的維護策略,通過審查,合理化和優(yōu)化現(xiàn)有的維護任務。</p><p> 2)應用設計的方法,以提高服務水平,從目前的表現(xiàn),希勒在其設計任務壽命,提高生命周期成
44、本和可靠性。</p><p> 3)制定政策,操作和維護一體化</p><p> 4)確定進行性能分析的有意義的可靠性數(shù)據(jù)的記錄和利用的有效手段。</p><p> 5)確保工廠設備保持適當byconsidering其安全性,可靠性和可用性的重要性。</p><p> 該研究還強調(diào)風險評估為基礎的方法,如FMEA / FMECA的意義
45、,計劃維護優(yōu)化(PMO)。的做法和原則已被證明的可靠性和可維護性建模生成在世界領先的采礦業(yè)的 盈利能力增加。此方法可作為一個有效的規(guī)劃和操作的工具,自動化和高度復雜的礦井生產(chǎn)系統(tǒng),而采用幾乎沒有冗余成本高,關鍵設備,即采煤機。這是可以合理的投資回報率(ROI)更長的平均無故障時間,之前預定的維護任務可能會干擾[2-3]。這項研究期間,如果數(shù)據(jù)被開采和分析,是2月 - 2010年8月。有趣的是,積極改善采煤機的性能已被觀察到初以來實
46、施的分析結果。</p><p><b> 二。采煤機的功能</b></p><p> 安裝在地下開采的采煤機是一個雙端測距滾筒采煤機(DERDS)配備舷外搖臂。它的設計和制造,提取和加載到刮板輸送機,這也是一個重要的組成部分的長壁開采系統(tǒng)煤炭。希勒縫范圍內(nèi)最低為1.8米和3.0米,底切不小于150mm,1000mm的網(wǎng)頁最多。希勒還能夠兩個半Web和雙向切割和裝載
47、全煤部分在額定容量,實現(xiàn)了生產(chǎn)的要求從4.0萬噸長壁,在40周的經(jīng)營年度,平均每周為100,000噸。此作業(yè)時間表允許每年的兩個長壁移動。有望實現(xiàn)采煤機運行時,設備利用率不低于98%的任何一個月,每周5天(106小時,每星期)。圖1示出的采煤機的主要組成部分。</p><p> III。可靠性問題和風險評估方法</p><p> 采煤機未能滿足可用性性能目標的期間內(nèi),由于一些可預防的故
48、障模式,會導致業(yè)務中斷。本研究從一開始就進行的SWOT分析顯示下列因素直接影響采煤機性能;</p><p> 1。在特設的基礎規(guī)劃和調(diào)度</p><p> 2。僅限于較高水平,設備層次不捕獲它的組件和子系統(tǒng)組件的故障模式</p><p> 3。符合維護時間表不一致</p><p><b> 4。數(shù)據(jù)利用差</b>
49、</p><p><b> 5。積壓未測</b></p><p> 6。工單包不完整(SWMS,JSA,圖紙,BOM等)</p><p> 識別個別關鍵項目的維護和故障模式的故障率進行了可靠性分析和全面的失效模式影響及危害性(FMECA)。這個過程的結果,得出的結論與慢性再現(xiàn)相同的維護的項目失敗所造成的同樣的故障模式和失效機制,其功能造成
50、的損失。帕累托分析,以確定問題的列表,使用標準最高的總收入損失,故障頻率,平均故障間隔時間(MTBF)和平均修復時間(MTTR)[4]。 Pareto分析識別尾隨電纜故障導致業(yè)務中斷作為一個領先的分擔。這種故障的原因包括:大多數(shù)電氣保護裝置故障和電氣故障的時間和輕微的復發(fā)??原因發(fā)生的物理傷害。根源物理損壞拖纜使用阿波羅根本原因分析進一步確定。阿波羅根本原因分析是一個解決問題的技術,經(jīng)營原則,“事情不只是發(fā)生,他們的情況發(fā)生?!钡脑蚝?/p>
51、影響</p><p> 關系治理所發(fā)生的一切,如有效的解決問題[5]的路徑。這個因果關系的確定突出顯示的在FMECA進程中的故障模式。此外,額外的業(yè)務中斷也帶動其他原因因素與數(shù)量最多的停機時間如下:</p><p><b> 1.電動系統(tǒng)失敗</b></p><p> 2,控制和監(jiān)測系統(tǒng)故障</p><p><
52、;b> 3,機械牽引故障</b></p><p> 四。現(xiàn)場數(shù)據(jù)采集反饋</p><p> 從現(xiàn)場和在線監(jiān)測系統(tǒng)的數(shù)據(jù)收集必須是準確的和現(xiàn)實的。它提供了一個生成正式的故障報告文件的起點和,確保反饋是穩(wěn)定和足夠的[6]。脈沖是一個電腦化維修管理系統(tǒng)(CMMS)目前在煤礦井下使用的。它是一個中央數(shù)據(jù)庫所有相關數(shù)據(jù)有關植物寄存器和存。該系統(tǒng)能夠提供以下信息:</p&
53、gt;<p> 1。工作訂單類型和優(yōu)先級</p><p> 2.Selecting維護類型</p><p> 3.Raising征用工作秩序</p><p> 4。設備信息和材料清單(BOM)</p><p><b> 5,設備歷史</b></p><p> 6,供應商信
54、息和成本報告</p><p> 7.Estimates(時間和勞動資料)</p><p> 8.固定資產(chǎn)時間捕捉資產(chǎn)的運行時間在24-hours/day</p><p> 該系統(tǒng)還提供了其他關鍵信息的鏈接,有效地開展所需的工作,如:</p><p> 1.Job計劃/標準工程</p><p> 2.Safe工
55、作程序</p><p><b> 3.工作許可證</b></p><p><b> 4.Risk評估</b></p><p> 5.Drawings和其他技術參考</p><p> 軟件組織的設備層次,從植物寄存器級別和延伸:</p><p> 1.兩個級別向下,子
56、裝配和組件;</p><p> 2.兩個水平向上,植物類群和網(wǎng)站代碼。</p><p> 工廠層級之外的,脈沖使用用戶定義的關鍵領域,“位置”,這是為了表明設備的物理位置站點的邊界內(nèi)。</p><p><b> 五.結論</b></p><p> 長壁煤炭開采生產(chǎn)系統(tǒng)的全球趨勢是朝著不斷提高生產(chǎn)力,用最少的操作和
57、維護成本成為可能。可以看出這種趨勢優(yōu)于從現(xiàn)有的長壁安裝和下一代的長壁安裝在增產(chǎn)預期不通。隨后,采煤機的需求,以增加工作面的生產(chǎn)是伴隨著增加服務和自動化程度高的水平,以確保安全和高效的工作環(huán)境,為運營商一致的采煤工作面的設備管理制度結合。然而,盈利能力取決于擁有的手段,準確地診斷任何性能問題,才導致生產(chǎn)停機時間。因此,至關重要的是有滿意和可靠的工作人員使用正確的故障檢測工具的正確組合,優(yōu)化維護任務為導向,成為知識淵博,積極參與FMECA和
58、根源分析提供的商業(yè)價值。研究證明,這是正確的方式來提高采煤機的可靠性。定性,維護資源的利用率變得有效的控制和安全管理的采煤機的故障模式。是技術和控制機制,如項目的應用,使過程達到最大的潛力。此外,這項研究表明,電腦收購一個準確可靠的數(shù)據(jù)和應用程序的可靠性工具,如FMECA,威布爾分析和解決問題的技術是必不可少的理解和管理失敗的行為和性能的采煤機在其工作壽命。卓越不是一個靜態(tài)的標準。酒吧總是被提出,所以持續(xù)的峰值性能的采煤機需要歷史數(shù)據(jù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 采煤機畢業(yè)設計外文翻譯
- 礦山機電畢業(yè)論文(含外文翻譯)采煤機滾筒測量裝置設計
- 外文翻譯--采煤機.doc
- 外文翻譯--采煤機.doc
- 采煤機畢業(yè)設計外文翻譯---電牽引采煤機的開關磁阻電動機
- 外文翻譯--長臂式采煤用的采煤機
- 機械畢業(yè)設計英文外文翻譯53采煤機
- 機械畢業(yè)設計英文外文翻譯53采煤機
- 礦山機電畢業(yè)論文(含外文翻譯)采煤機煤巖識別系統(tǒng)的設計
- 礦山機電畢業(yè)論文(含外文翻譯)采煤機實驗測試數(shù)據(jù)采集系統(tǒng)設計
- 畢業(yè)論文---采煤機截割部的設計
- 滾筒采煤機的總體設計畢業(yè)論文
- 滾筒式采煤機-畢業(yè)論文開題報告
- 礦山機電畢業(yè)論文(含外文翻譯)采煤機牽引部總體設計與運行維護
- 外文翻譯--長臂式采煤用的采煤機.doc
- 外文翻譯--長臂式采煤用的采煤機.doc
- 機械畢業(yè)設計英文外文翻譯53采煤機.docx
- 機械畢業(yè)設計英文外文翻譯53采煤機.docx
- 滾筒采煤機截割部分的設計畢業(yè)論文
- 礦山機電畢業(yè)論文(含外文翻譯)連續(xù)采煤機總體方案及截割部設計
評論
0/150
提交評論