已閱讀1頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 人工魚群算法在電機(jī)參數(shù)辨識(shí)中的應(yīng)用.pdf
- 基于協(xié)同粒子群算法的PMSM在線參數(shù)辨識(shí).pdf
- WMSNs 中人工魚群和粒子群混合算法的覆蓋優(yōu)化研究.pdf
- 粒子群—模擬退火融合算法及其在函數(shù)優(yōu)化中的應(yīng)用.pdf
- 粒子群算法在神經(jīng)網(wǎng)絡(luò)參數(shù)優(yōu)化中的應(yīng)用.pdf
- 等效電路aaa
- 基于改進(jìn)魚群與粒子群混合算法的機(jī)組優(yōu)化組合研究.pdf
- 改進(jìn)粒子群算法在薄膜參數(shù)反演與設(shè)計(jì)中的應(yīng)用.pdf
- 粒子群算法在仿人智能控制參數(shù)優(yōu)化中的應(yīng)用.pdf
- 等效電路模型在SMPDP特性研究中的改進(jìn)及應(yīng)用.pdf
- 粒子群算法在效用優(yōu)化中的應(yīng)用.pdf
- 粒子群算法在查詢優(yōu)化中的應(yīng)用.pdf
- 基于改進(jìn)粒子群算法的邊坡工程參數(shù)辨識(shí)研究.pdf
- 粒子群算法在1000MW火電機(jī)組模型辨識(shí)中的應(yīng)用.pdf
- GaN HEMT小信號(hào)等效電路參數(shù)提取.pdf
- 粒子群算法的改進(jìn)及其在回歸模型參數(shù)估計(jì)中的應(yīng)用
- 變壓器等效電路
- 粒子群算法的改進(jìn)及其在回歸模型參數(shù)估計(jì)中的應(yīng)用.pdf
- 基于改進(jìn)粒子群算法的電力負(fù)荷模型參數(shù)辨識(shí)研究.pdf
- 混沌粒子群算法在河流水質(zhì)模型參數(shù)識(shí)別中的應(yīng)用.pdf
評(píng)論
0/150
提交評(píng)論