人工智能的核心技術(shù)_第1頁
已閱讀1頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、人工智能的核心技術(shù)是什么?《人工智能標(biāo)準(zhǔn)化白皮書(2018)》1機器學(xué)習(xí)機器學(xué)習(xí)(MachineLearning)是一門涉及統(tǒng)計學(xué)、系統(tǒng)辨識、逼近理論、神經(jīng)網(wǎng)絡(luò)、優(yōu)化理論、計算機科學(xué)、腦科學(xué)等諸多領(lǐng)域的交叉學(xué)科,研究計算機怎樣模擬或?qū)崿F(xiàn)人類的學(xué)習(xí)行為,以獲取新的知識或技能,重新組織已有的知識結(jié)構(gòu)使之不斷改善自身的性能,是人工智能技術(shù)的核心?;跀?shù)據(jù)的機器學(xué)習(xí)是現(xiàn)代智能技術(shù)中的重要方法之一,研究從觀測數(shù)據(jù)(樣本)出發(fā)尋找規(guī)律,利用這些規(guī)律

2、對未來數(shù)據(jù)或無法觀測的數(shù)據(jù)進行預(yù)測。根據(jù)學(xué)習(xí)模式、學(xué)習(xí)方法以及算法的不同,機器學(xué)習(xí)存在不同的分類方法。(1)根據(jù)學(xué)習(xí)模式將機器學(xué)習(xí)分類為監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)和強化學(xué)習(xí)等。監(jiān)督學(xué)習(xí)監(jiān)督學(xué)習(xí)是利用已標(biāo)記的有限訓(xùn)練數(shù)據(jù)集,通過某種學(xué)習(xí)策略方法建立一個模型,實現(xiàn)對新數(shù)據(jù)實例的標(biāo)記(分類)映射,最典型的監(jiān)督學(xué)習(xí)算法包括回歸和分類。監(jiān)督學(xué)習(xí)要求訓(xùn)練樣本的分類標(biāo)簽已知,分類標(biāo)簽精確度越高,樣本越具有代表性,學(xué)習(xí)模型的準(zhǔn)確度越高。監(jiān)督學(xué)習(xí)在自然語言處理

3、、信息檢索、文本挖掘、手寫體辨識、垃圾郵件偵測等領(lǐng)域獲得了廣泛應(yīng)用。無監(jiān)督學(xué)習(xí)無監(jiān)督學(xué)習(xí)是利用無標(biāo)記的有限數(shù)據(jù)描述隱藏在未標(biāo)記數(shù)據(jù)中的結(jié)構(gòu)規(guī)律,最典型的非監(jiān)督學(xué)習(xí)算法包括單類密度估計、單類數(shù)據(jù)降維、聚類等。無監(jiān)督學(xué)習(xí)不需要訓(xùn)練樣本和人工標(biāo)注數(shù)據(jù),便于壓縮數(shù)據(jù)存儲、減少計算量、提升算法速度,還可以避免正、負(fù)樣本偏移引起的分類錯誤問題。主要用于經(jīng)濟預(yù)測、異常檢測、數(shù)據(jù)挖掘、圖像處理、模式識別等領(lǐng)域,例如組織大型計算機集群、社交網(wǎng)絡(luò)分析、市場

4、分割、天文數(shù)據(jù)分析等。強化學(xué)習(xí)強化學(xué)習(xí)是智能系統(tǒng)從環(huán)境到行為映射的學(xué)習(xí),以使強化信號函數(shù)值最大。由于外部環(huán)境提供的信息很少,強化學(xué)習(xí)系統(tǒng)必須靠自身的經(jīng)歷進行學(xué)習(xí)。強化學(xué)習(xí)的目標(biāo)是學(xué)習(xí)從環(huán)境狀態(tài)到行為的映射,使得智能體選擇的行為能夠獲得環(huán)境最大的獎賞,使得外部環(huán)境對學(xué)習(xí)系統(tǒng)在某種意義下的評價為最佳。其在機器人控制、無人駕駛、下棋、工業(yè)控制等領(lǐng)域獲得成功應(yīng)用。(2)根據(jù)學(xué)習(xí)方法可以將機器學(xué)習(xí)分為傳統(tǒng)機器學(xué)習(xí)和深度學(xué)習(xí)。傳統(tǒng)機器學(xué)習(xí)傳統(tǒng)機器學(xué)

5、習(xí)從一些觀測(訓(xùn)練)樣本出發(fā),試圖發(fā)現(xiàn)不能通過原理分析獲得的規(guī)律,實現(xiàn)對未來數(shù)據(jù)行為或趨勢的準(zhǔn)確預(yù)測。相關(guān)算法包括邏輯回歸、隱馬爾科夫方法、支持向種自適應(yīng)機制以確定演化機制的影響等。2知識圖譜知識圖譜本質(zhì)上是結(jié)構(gòu)化的語義知識庫,是一種由節(jié)點和邊組成的圖數(shù)據(jù)結(jié)構(gòu),以符號形式描述物理世界中的概念及其相互關(guān)系,其基本組成單位是“實體—關(guān)系—實體”三元組,以及實體及其相關(guān)“屬性—值”對。不同實體之間通過關(guān)系相互聯(lián)結(jié),構(gòu)成網(wǎng)狀的知識結(jié)構(gòu)。在知識圖

6、譜中,每個節(jié)點表示現(xiàn)實世界的“實體”,每條邊為實體與實體之間的“關(guān)系”。通俗地講,知識圖譜就是把所有不同種類的信息連接在一起而得到的一個關(guān)系網(wǎng)絡(luò),提供了從“關(guān)系”的角度去分析問題的能力。知識圖譜可用于反欺詐、不一致性驗證、組團欺詐等公共安全保障領(lǐng)域,需要用到異常分析、靜態(tài)分析、動態(tài)分析等數(shù)據(jù)挖掘方法。特別地,知識圖譜在搜索引擎、可視化展示和精準(zhǔn)營銷方面有很大的優(yōu)勢,已成為業(yè)界的熱門工具。但是,知識圖譜的發(fā)展還有很大的挑戰(zhàn),如數(shù)據(jù)的噪聲問

7、題,即數(shù)據(jù)本身有錯誤或者數(shù)據(jù)存在冗余。隨著知識圖譜應(yīng)用的不斷深入,還有一系列關(guān)鍵技術(shù)需要突破。3自然語言處理自然語言處理是計算機科學(xué)領(lǐng)域與人工智能領(lǐng)域中的一個重要方向,研究能實現(xiàn)人與計算機之間用自然語言進行有效通信的各種理論和方法,涉及的領(lǐng)域較多,主要包括機器翻譯、機器閱讀理解和問答系統(tǒng)等。(1)機器翻譯機器翻譯技術(shù)是指利用計算機技術(shù)實現(xiàn)從一種自然語言到另外一種自然語言的翻譯過程?;诮y(tǒng)計的機器翻譯方法突破了之前基于規(guī)則和實例翻譯方法的

8、局限性,翻譯性能取得巨大提升?;谏疃壬窠?jīng)網(wǎng)絡(luò)的機器翻譯在日常口語等一些場景的成功應(yīng)用已經(jīng)顯現(xiàn)出了巨大的潛力。隨著上下文的語境表征和知識邏輯推理能力的發(fā)展,自然語言知識圖譜不斷擴充,機器翻譯將會在多輪對話翻譯及篇章翻譯等領(lǐng)域取得更大進展。目前非限定領(lǐng)域機器翻譯中性能較佳的一種是統(tǒng)計機器翻譯,包括訓(xùn)練及解碼兩個階段。訓(xùn)練階段的目標(biāo)是獲得模型參數(shù),解碼階段的目標(biāo)是利用所估計的參數(shù)和給定的優(yōu)化目標(biāo),獲取待翻譯語句的最佳翻譯結(jié)果。統(tǒng)計機器翻譯主

9、要包括語料預(yù)處理、詞對齊、短語抽取、短語概率計算、最大熵調(diào)序等步驟?;谏窠?jīng)網(wǎng)絡(luò)的端到端翻譯方法不需要針對雙語句子專門設(shè)計特征模型,而是直接把源語言句子的詞串送入神經(jīng)網(wǎng)絡(luò)模型,經(jīng)過神經(jīng)網(wǎng)絡(luò)的運算,得到目標(biāo)語言句子的翻譯結(jié)果。在基于端到端的機器翻譯系統(tǒng)中,通常采用遞歸神經(jīng)網(wǎng)絡(luò)或卷積神經(jīng)網(wǎng)絡(luò)對句子進行表征建模,從海量訓(xùn)練數(shù)據(jù)中抽取語義信息,與基于短語的統(tǒng)計翻譯相比,其翻譯結(jié)果更加流暢自然,在實際應(yīng)用中取得了較好的效果。(2)語義理解語義理解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論