東軟商務智能數(shù)據(jù)挖掘考試題庫_第1頁
已閱讀1頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、1商務智能復習題商務智能復習題一、一、名詞解釋名詞解釋1.數(shù)據(jù)倉庫數(shù)據(jù)倉庫:是一種新的數(shù)據(jù)處理體系結(jié)構,是面向主題的、集成的、不可更新的(穩(wěn)定性)、隨時間不斷變化(不同時間)的數(shù)據(jù)集合,為企業(yè)決策支持系統(tǒng)提供所需的集成信息。2.OLAPOLAP:OLAP是在OLTP的基礎上發(fā)展起來的,以數(shù)據(jù)倉庫為基礎的數(shù)據(jù)分析處理,是共享多維信息的快速分析,是被專門設計用于支持復雜的分析操作,側(cè)重對分析人員和高層管理人員的決策支持。3.粒度粒度:指數(shù)據(jù)

2、倉庫的數(shù)據(jù)單位中保存數(shù)據(jù)細化或綜合程度的級別。粒度影響存放在數(shù)據(jù)倉庫中的數(shù)據(jù)量的大小,同時影響數(shù)據(jù)倉庫所能回答查詢問題的細節(jié)程度。4.數(shù)據(jù)挖掘數(shù)據(jù)挖掘:從大量的、不完全的、有噪聲的、模糊的、隨機的數(shù)據(jù)中,提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。5.OLTPOLTP:OLTP為聯(lián)機事務處理的縮寫,OLAP是聯(lián)機分析處理的縮寫。前者是以數(shù)據(jù)庫為基礎的,面對的是操作人員和低層管理人員,對基本數(shù)據(jù)進行查詢和增、刪、

3、改等處理。6.ROLAPROLAP:是基于關系數(shù)據(jù)庫存儲方式的,在這種結(jié)構中,多維數(shù)據(jù)被映像成二維關系表,通常采用星型或雪花型架構,由一個事實表和多個維度表構成。7.聚類聚類:是將物理或抽象對象的集合分組成為多個類或簇(cluster)的過程,使得在同一個簇中的對象之間具有較高的相似度,而不同簇中的對象差別較大。8.決策樹決策樹:是用樣本的屬性作為結(jié)點,用屬性的取值作為分支的樹結(jié)構。它是分類規(guī)則挖掘的典型方法,可用于對新樣本進行分類。9

4、.頻繁項集頻繁項集:指滿足最小支持度的項集,是挖掘關聯(lián)規(guī)則的基本條件之一。10.支持度支持度:規(guī)則A→B的支持度指的是所有事件中A與B同地發(fā)生的的概率,即P(A∪B),是AB同時發(fā)生的次數(shù)與事件總次數(shù)之比。支持度是對關聯(lián)規(guī)則重要性的衡量。11.可信度可信度:規(guī)則A→B的可信度指的是包含A項集的同時也包含B項集的條件概率P(B|A),是AB同時發(fā)生的次數(shù)與A發(fā)生的所有次數(shù)之比??尚哦仁菍﹃P聯(lián)規(guī)則的準確度的衡量。12.關聯(lián)規(guī)則關聯(lián)規(guī)則:同時

5、滿足最小支持度閾值和最小可信度閾值的規(guī)則稱之為關聯(lián)規(guī)則。二、二、綜合題綜合題1.何謂數(shù)據(jù)挖掘數(shù)據(jù)挖掘?它有哪些方面的功能功能?數(shù)據(jù)挖掘的功能包括:概念描述、關聯(lián)分析、分類與預測、聚類分析、趨勢分析、孤立點分析以及偏差分析等。3據(jù)分割策略、定義關系模式、定義記錄系統(tǒng)。物理數(shù)據(jù)模型設計的主要內(nèi)容包括:確定數(shù)據(jù)存儲結(jié)構、確定數(shù)據(jù)存放位置、確定存儲分配以及確定索引策略等。提高性能的主要措施有劃分粒度、數(shù)據(jù)分割、合并表、建立數(shù)據(jù)序列、引入冗余、生

6、成導出數(shù)據(jù)、建立廣義索引等。7.在數(shù)據(jù)挖掘之前為什么要對原始數(shù)據(jù)進行預處理預處理?原始業(yè)務數(shù)據(jù)來自多個數(shù)據(jù)庫或數(shù)據(jù)倉庫,它們的結(jié)構和規(guī)則可能是不同的,這將導致原始數(shù)據(jù)非常的雜亂、不可用,即使在同一個數(shù)據(jù)庫中,也可能存在重復的和不完整的數(shù)據(jù)信息,為了使這些數(shù)據(jù)能夠符合數(shù)據(jù)挖掘的要求,提高效率和得到清晰的結(jié)果,必須進行數(shù)據(jù)的預處理。為數(shù)據(jù)挖掘算法提供完整、干凈、準確、有針對性的數(shù)據(jù),減少算法的計算量,提高挖掘效率和準確程度。8.簡述數(shù)據(jù)預處

7、理方法預處理方法和內(nèi)容內(nèi)容。①數(shù)據(jù)清洗:包括填充空缺值,識別孤立點,去掉噪聲和無關數(shù)據(jù)。②數(shù)據(jù)集成:將多個數(shù)據(jù)源中的數(shù)據(jù)結(jié)合起來存放在一個一致的數(shù)據(jù)存儲中。需要注意不同數(shù)據(jù)源的數(shù)據(jù)匹配問題、數(shù)值沖突問題和冗余問題等。③數(shù)據(jù)變換:將原始數(shù)據(jù)轉(zhuǎn)換成為適合數(shù)據(jù)挖掘的形式。包括對數(shù)據(jù)的匯總、聚集、概化、規(guī)范化,還可能需要進行屬性的重構。④數(shù)據(jù)歸約:縮小數(shù)據(jù)的取值范圍,使其更適合于數(shù)據(jù)挖掘算法的需要,并且能夠得到和原始數(shù)據(jù)相同的分析結(jié)果。9.簡述

8、數(shù)據(jù)清理數(shù)據(jù)清理的基本內(nèi)容。1.聚類2.空值處理.3.冗余和重復10.何謂聚類聚類?它與分類有什么異同?聚類是將物理或抽象對象的集合分組成為多個類或簇(cluster)的過程,使得在同一個簇中的對象之間具有較高的相似度,而不同簇中的對象差別較大。聚類與分類不同,聚類要劃分的類是未知的,分類則可按已知規(guī)則進行;聚類是一種無指導學習,它不依賴預先定義的類和帶類標號的訓練實例,屬于觀察式學習,分類則屬于有指導的學習,是示例式學習。11.設某事

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論