版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、有限元分析概念有限元分析概念有限元法:把求解區(qū)域看作由許多小的在節(jié)點(diǎn)處相互連接的單元(子域)所構(gòu)成,其模型給出基本方程的分片(子域)近似解,由于單元(子域)可以被分割成各種形狀和大小不同的尺寸,所以它能很好地適應(yīng)復(fù)雜的幾何形狀、復(fù)雜的材料特性和復(fù)雜的邊界條件有限元模型:它是真實(shí)系統(tǒng)理想化的數(shù)學(xué)抽象。由一些簡單形狀的單元組成,單元之間通過節(jié)點(diǎn)連接,并承受一定載荷。有限元分析:是利用數(shù)學(xué)近似的方法對真實(shí)物理系統(tǒng)(幾何和載荷工況)進(jìn)行模擬。并
2、利用簡單而又相互作用的元素,即單元,就可以用有限數(shù)量的未知量去逼近無限未知量的真實(shí)系統(tǒng)。線彈性有限元是以理想彈性體為研究對象的,所考慮的變形建立在小變形假設(shè)的基礎(chǔ)上。在這類問題中,材料的應(yīng)力與應(yīng)變呈線性關(guān)系,滿足廣義胡克定律;應(yīng)力與應(yīng)變也是線性關(guān)系,線彈性問題可歸結(jié)為求解線性方程問題,所以只需要較少的計(jì)算時(shí)間。如果采用高效的代數(shù)方程組求解方法,也有助于降低有限元分析的時(shí)間。線彈性有限元一般包括線彈性靜力學(xué)分析與線彈性動(dòng)力學(xué)分析兩方面。非
3、線性問題與線彈性問題的區(qū)別:1)非線性問題的方程是非線性的,一般需要迭代求解;2)非線性問題不能采用疊加原理;3)非線性問題不總有一致解,有時(shí)甚至沒有解。有限元求解非線性問題可分為以下三類:有限元理論基礎(chǔ)有限元理論基礎(chǔ)有限元方法的基礎(chǔ)是變分原理和加權(quán)余量法,其基本求解思想是把計(jì)算域劃分為有限個(gè)互不重疊的單元,在每個(gè)單元內(nèi),選擇一些合適的節(jié)點(diǎn)作為求解函數(shù)的插值點(diǎn),將微分方程中的變量改寫成由各變量或其導(dǎo)數(shù)的節(jié)點(diǎn)值與所選用的插值函數(shù)組成的線性
4、表達(dá)式,借助于變分原理或加權(quán)余量法,將微分方程離散求解。采用不同的權(quán)函數(shù)和插值函數(shù)形式,便構(gòu)成不同的有限元方法。1.加權(quán)余量法:加權(quán)余量法:是指采用使余量的加權(quán)函數(shù)為零求得微分方程近似解的方法稱為加權(quán)余量法。(WeightedresidualmethodWRM)是一種直接從所需求解的微分方程及邊界條件出發(fā),尋求邊值問題近似解的數(shù)學(xué)方法。加權(quán)余量法是求解微分方程近似解的一種有效的方法。設(shè)問題的控制微分方程為:在V域內(nèi)()0Luf??(5.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論