版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、EnergyPowerEngineering20124529538:dx.doi.g10.4236epe.2012.46066PublishedOnlineNovember2012(:www.SciRP.gjournalepe)OnlineDiagnosisMonitingfPowerDistributionSystemAtefAlmashaqbehAoudaArfoaElectricalEngineeringDepartmentTaf
2、ilaTechnicalUniversityTafilaJdanEmail:dr.atef_almashakbeh@ReceivedOctober162012revisedNovember142012acceptedNovember262012ABSTRACTRecentlypowerdistributionsystemisgettinglargermecomplex.Itisverydifficultevenftheexpertsto
3、diagnosismonitingtomadebestaction.Thismotivatedmanyresearcherstoinvestigatepowersystemsineffttoimprovereliabilitybyfocusingonfaultdetectionclassification.Therehavebeenmanystudiesonproblemsbuttheresultsarenotgoodenoughfap
4、plyingtorealpowersystem.Inthispaperanewprotectiverelayingframewktodiagnosismonitingfaultsinanelectricalpowerdistributionsystemwith.Thiswkwillextractfaultsignaturesbyusingellipsefitusingleastsquarescriterionduringfaultcon
5、dition.ByutilizingprincipalcomponentanalysismethodsthissystemwillidentifyclassifylocalizeanyfaultinstantaneouslyKeywds:FaultDetectionClassificationProtectiveRelayingPCAPSCAD1.IntroductionFaultdetectionisafocalpointinther
6、esearchofpowersystemsareasincetheestablishmentofelectricitytransmissiondistributionsystems.Theobjectivesofapowersystemfaultanalysisistoprovideenoughinfmationtounderstthereasonsthatleadtoaninterruptiontoassoonaspossiblere
7、stethehoverofpowerperhapsminimizefutureoccurrencesifpossibleatall[1].SeveraltechniquesareadoptedfpatternrecognitionofgeneratingthehighfrequencysignalsArtificialNeuralwk(ANN)Waveletsamongotherpowerfulpatternrecognitioncla
8、ssificationtools.ANNbasedalgithmsdependonidentifyingthedifferentpatternsofsystemvariablesusingimpedanceinfmationANNisthattheresolutionisnotefficientsinceitcanbeaverysparsewkwiththeneedflargesizetrainingdataaddinganadditi
9、onalburdenonitscomputationalcomplexity[24].Waveletstransfmisadoptedtodiscriminatethefaultstypefromthemagizinginrushcurrent[5].OthersincpatedwavelettransfmwithothermethodssuchasProbabilisticNeuralwk(PNN)adaptiveresonancet
10、heyadaptiveneuralfuzzyinferencesystemsupptvectmachines[610].FuzzylogicwasalsocombinedwithdiscreteFouriertransfmadaptiveresonancetheyprinciplesofestimationindependentcomponentanalysistoenhanceperfmance[9].Unftunatelymosto
11、ftheavailabletoolsffaultdetectionclassificationarenotefficientarenotinvestigatedfrealtimeimplementationthereisaneedfnewalgithmsextractiondatareductioninlargedatasets[9].TypicallyPCAisutilizedistoreducethedimensionalityof
12、adatasetinwhichthereisalargenumberofinterrelatedvariableswhilethecurrentvariationinthedatasetismaintainedasmuchaspossible[9].Theprincipalcomponents(PCs)arecalculatedusingthecovariancematrixafterasimplenmalizationprocedur
13、e.AfterellipsefittingweapplythePCAusingfollowingsteps:Step1:GetdatafromfittingellipseStep2:SubtractthemeanStep3:CalculatethecovariancematrixStep4:CalculatetheeigenvectseigenvaluesoftencovarianceMatrixStep5:Choosingcompon
14、entsfmingafeaturevect.InfactitturnsoutthattheeigenvectwiththehighesteigenvalueistheprinciplecomponentofthedatainFigure2afterapplyingPCAinfittedellipseduringfaultconditiontheeigenvectwiththelargeseigenvaluewastheonethatpo
15、inteddownthedleofthedata.Itisthemostsignificantrelationshipbetweenthedatadimensions..WenotetheangleofprincipalcomponentwillbeauniquedistinguishedasshowninFigure3.Theclassificationprocessofafaultisdividedintotwostagesthef
16、irstistheprefaultprocedureusingallsignaturesgeneratedpritotestingtoenfcetheirprojectionsontotheprincipalcomponentsspacecalculatedtheprinciplecomponenthealthyangle(PCHA).Thesecondstagesisthetestingprocessduringfaultcondit
17、ionarefollowedtoprojectthetestpatternontoPCAspacefollowedbymeasuringofthePrinciplecomponentfaultangle(PCFA).Thisminimumdistancewillidentifyamatchofapatterntoafaultnofaultatall.Thismethodusesonlycurrentvoltagesignalsmeasu
18、redbyrelayagentsateachbusofthewksectionstoidentifythetypeoffaultifitisathreelinestoground(3LG)singlelinetoground(LG)doublelinetoground(DLG)alinetoline(LL)fault.Italsodeterminesthephasesincludedinfaultthebuslineatwhichthe
19、faultoccurred.Ananalysisofallpossibletypesoffaultinthreephasesystemi.e.LGfaults(AGBGCG)LLfaults(ABBCCA)DLGfaults(ABGBCGCAG)3LGfaults(ABCG)iscarriedout.Inthispapertheproposedalgorithmdeterminesthetypeoffaultfirstfinallyit
20、determinesthefaultlocation.ToidentifythefaulttypewenotethePCFAwithlessthancomparingwithPCHAfexampleifwehaveFaultAGwenotePCFAfphasealessthanPCHAfphaseaPCFAfphasebcarethesameasPCHAfphasebcalsoffaultACGthePCFAfphaseaclessth
21、anPCHAfphaseacbutPCFAfphasebisthesameofPCHAfphasebalsoflowimpedancefaultthedifferencebetweenPCFAPCHAisveryhighwillincreasedgraduallyatfaultedbusesthenwillbeincreasedafterfaultedbusesbutinhighimpedancefaultthedifferencebe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 在線考試系統(tǒng)畢業(yè)論文(含外文翻譯)
- 管道監(jiān)測系統(tǒng)畢業(yè)論文(含外文翻譯)
- 煤礦環(huán)境監(jiān)測定位系統(tǒng)畢業(yè)論文外文翻譯
- 畢業(yè)論文電力變壓器狀態(tài)監(jiān)測與故障診斷
- 電力系統(tǒng)故障及其危害畢業(yè)論文外文翻譯
- 空調(diào)系統(tǒng)-畢業(yè)論文外文翻譯
- 太陽能集熱監(jiān)測系統(tǒng)畢業(yè)論文(含外文翻譯)
- 畢業(yè)論文外文翻譯-系統(tǒng)的分析與設(shè)計
- 紅外遙控系統(tǒng)畢業(yè)論文外文翻譯
- 制造系統(tǒng)設(shè)計-畢業(yè)論文外文翻譯
- 電力變壓器故障在線監(jiān)測與診斷系統(tǒng).pdf
- 供配電系統(tǒng)畢業(yè)論文
- 電力電纜絕緣在線監(jiān)測與診斷.pdf
- 電力電纜在線監(jiān)測與診斷ppt課件
- 電力變壓器實時監(jiān)測系統(tǒng)設(shè)計【畢業(yè)論文】
- 礦山機電畢業(yè)論文(含外文翻譯)煤礦安全生產(chǎn)監(jiān)測系統(tǒng)設(shè)計
- 單片機系統(tǒng)-畢業(yè)論文外文翻譯
- 地基與基礎(chǔ)畢業(yè)論文外文翻譯
- 在線畢業(yè)論文提交系統(tǒng)的設(shè)計與實現(xiàn)——畢業(yè)論文
- 鍛造畢業(yè)論文外文翻譯
評論
0/150
提交評論