基于混合用戶模型的協(xié)同過濾推薦算法研究_第1頁
已閱讀1頁,還剩56頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、重慶大學(xué)碩士學(xué)位論文基于混合用戶模型的協(xié)同過濾推薦算法研究姓名:袁先虎申請學(xué)位級別:碩士專業(yè):計算機軟件與理論指導(dǎo)教師:王茜2010-04重慶大學(xué)碩士學(xué)位論文 英文摘要 II ABSTRACT Widely using of Internet and rapidly development of E- commerce caused information overload, which made difficulties f

2、or consumers to find their needed products within a mass of product information, thus E- commerce recommender systems emerge as the times require. Today, E- commerce recommender systems are immat

3、ure in practical use, and still have a lot of problems, like the quality of recommendation being seriously depressed by enormous and sparse ratings of consumers, bad system expansibility, bad recommendat

4、ion real- time, etc. To solve these main problems of current recommender systems, this dissertation valuably explores and researches the key techniques of user model and collaborative filtering algorith

5、ms in E- commerce personalized recommender systems. Collaborative filtering is the most widely used and successful technology for personalized recommender systems. However it faces challenges of scala

6、bility and recommendation accuracy. Collaborative filtering can be divided into memory based and model based. The former is more accurate while the latter performs better in scalability. This pap

7、er proposes a hybrid user model. The recommender system based on this model not only holds the advantage of recommendation accuracy in memory- based method, but also has the scalability as goo

8、d as model- based method. In the aspect of user model, the dissertation analyses defects of classical user model of collaborative filtering recommendation. And hybrid user model is constructed ba

9、sed on item content descriptions and demographic information. The hybrid user model condenses item content description, demographic information and user- item rating matrix, which raises the densit

10、y of data and helps to solve the problems of data sparsity and hard rating obtainment. Feature interest measure is introduced in the hybrid user model, which can reflect the degree of featur

11、e preference of users and obtain more accurate similarity between target user and the neighbors. In the aspect of collaborative filtering, this dissertation analyses sparsity, scalability, real- ti

12、me and recommendation accuracy issues of collaborative filtering algorithms in current E- commerce personalized recommender systems. To solve these problems, collaborative filtering recommendation algori

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論