版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、The Ninth International Conference on Electronic Measurement Step2 determine the size of face area and select face area; Step3 normalize selected face areas into the same size; Step4 compute the average value of ev
2、ery corresponding pixel of face area. Before constructing template, some images including observe face are chosen. At first, the size of face area is determined. Then, the face area selected manually in these fa
3、ce image. The number of the selected face area is n. The matrix vectors of face areas are distributed independently, so are the pixel values in same position of these face areas. The pixel value in the kth (k=1,2,?,n
4、) position of face area is fk(i,j) (k=1,2,…,n) and the normalized scale factor of these face image is wk (k=1,2,…,n), thus, the average face template can be described as follows. ? ? ? ? ? ? ?nk k k j i f w n j i T1 ,
5、 1 ,(1) According to statistics theory, if some pixel value fk(i,j) in the kth face area subjects to normal distribution N(?, ?2), where, ? is the mean of the pixel fk(i,j) and ? is the variance, T(i,j) subjects to N(
6、?, ?2/n) distribution. So the chanciness of local density in face template decreases in a large scale. If face image is sampled in the situation that the distance between the face and the camera is fixed, the size o
7、f face is unchanged correspondingly and the normalized scale factor wk can be 1. Then the average face template T(i,j) can be altered as follows. ? ? ? ? ? ? ?nk k j i f n j i T1 , 1 ,(2) 4-54__________________________
8、___978-1-4244-3864-8/09/$25.00 ©2009 IEEE The Ninth International Conference on Electronic Measurement & Instruments ICEMI’ 2009 (a)
9、 (b) Fig. 6 detected possible location of half face V. CRITERION FUNCTION In the experiment, the half faces in the images were detected with the template matching method. Its fundamental princip
10、le can be described as follows. The selected average half face-template is ransacked on the detecting image and the similarity between them is calculated. The half face image which is similar to the template is recko
11、ned among the detecting image, if the value of the similarity function in some position is greater than the threshold value given. The similarity is the statistical value of local areas in the image. The similarity v
12、alue of some different sub-image image might be equal to another, despite all that they are different sub-images. In the experiment, the similarity function value in the half face-template matched position should be
13、stood out and the value in the non-matched position should be bated. The method adopted is described as follows. Suppose the length of the half face-template T is I and the width is J, as is shown in figure 4. The le
14、ngth of the full face-template is 2I and the width is J. Of the detecting image, the length is L and the width is W. The sub-image corresponding to the position (m,n) in the image where the template is set on is Pm,n
15、 .Then the similarity between the template and the sub-image S(m,n) can be expressed with the formula (3) [9]. ? ? ? ? ? ? ? ? ?? ? ? ? ?IiJjn m j i T j i P n m S1 12 , , , ,(3) For the function above, the rule of dete
16、rmining whether there exists the half face is that given a threshold value th, if S(m,n)?th, the half face-template T is similar to the sub-image Pm,n, and if S(m,n)=0, the half face-template T is identical with the
17、sub-image Pm,n completely. Expanding the formula (3), it will be the following: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ?? ?? ? ? ? ? ? ? ? ? ? ?IiJjIiJjn m IiJjn m j i T j i T j i P j i P n m S1 121 1,1 12 , , , , 2 , ,(4) Whe
18、re, ? ? ? ? ?? ? ?IiJjn m j i P1 12 , , is the energy of sub-image Pm,n which is covered by half face template T located in (i, j) of the images. During the ransacking of the images, its value is changing slowly. ? ?
19、? ? ?? ? ? ?IiJjn m j i T j i P1 1, , ,is the correlation between the template T and sub-image Pm,n, it gets the maximum value when template T match the sub-image Pm,n exactly. ? ? ? ? ?? ? ?IiJj j i T1 12 ,is the ener
20、gy of half face template T, its value can be determined when the template T is constructed. It has no relationship with the position of the sub-image Pm,n. Therefore, the ratio of the correlation of the template T and
21、 sub-image Pm,n to the energy of sub-image Pm,n can act ad the similarity, that is, ? ?? ? ? ?? ? ? ? ????? ?? ? ?? IiJjn mIiJjn mj i Pj i T j i Pn m s1 12 ,1 1,,, ,,(5) Normalizing formula (5), the following one could
22、 be deduced. ? ?? ? ? ?? ? ? ? ? ? ? ? ?? ????? ? ? ?? ? ?? IiJjIiJjn mIiJjn mj i T l i Pj i T j i Pn m s1 121 12 ,1 1,, ,, ,,(6) Where, s(m,n) is similarity, 0?s(m,n) ?1. As to similarity s(m,n), the rule for determin
23、ing whether the half face exists can be described as: if threshold is given as th, when s(m,n)?th, the conclusion that the half face template T is similar to the sub-image Pm,n is drawn, when s(m,n)=1, the half face
24、template T match the sub-image Pm,n exactly. Assuming that the O(T) represents time cost of face detection based on half face template and the O(F) represents that based on full face one, the calculating method of t
25、he O(T) and O(F) can be described as formulas (7) and (8). O(T) = I * J * ( L - I ) * ( W - J ) (7) O(F) = 2I * J * ( L - 2I ) * ( W - J ) (8) The ratio of O(T) to O(F) can
26、 be shown in formula (9) I LI LJ W I L J IJ W I L J IF OT O4 2 ) ( * ) 2 ( * * 2) ( * ) ( * *) () (?? ? ? ?? ? ?(9) When the value of L is much greater than that of I, the result of (9) approximates to1/2, that is to
27、say, the time cost of detecting faces in images with the half face template is about half of that with the full face one. Therefore, about half time of the processing is saved. VI. EXPERIMENTS RESULTS As to average h
28、alf face template shown in figure 5, the similarity of “ left face and left face” , “ right face and right face”and “ left face and right face”were calculated with the formula (6). The results are 1.0000?1.0000 and 0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯---基于半邊臉的人臉檢測
- 外文翻譯---基于半邊臉的人臉檢測
- 外文翻譯---基于半邊臉的人臉檢測
- 外文翻譯---基于半邊臉的人臉檢測.docx
- 外文翻譯---基于半邊臉的人臉檢測.docx
- 基于半邊臉的人臉檢測——畢業(yè)論文
- 基于半邊臉的人臉檢測——畢業(yè)論文
- 基于半邊臉的人臉檢測[中文4125字]
- 基于半邊臉的人臉檢測[中文4125字]
- 基于半邊臉的人臉檢測[中文4125字].docx
- 基于半邊臉的人臉檢測[中文4125字].docx
- 基于Adaboost算法的人臉實時臉檢測及FPGA設(shè)計.pdf
- 基于特征臉及Fisher臉的人臉識別方法.pdf
- 基于臉紋的人臉識別方法.pdf
- 基于膚色和特征臉的人臉識別技術(shù).pdf
- 2013年人臉識別外文翻譯—人臉識別技術(shù)綜述
- 2013年人臉識別外文翻譯—人臉識別技術(shù)綜述(節(jié)選).DOCX
- 2013年人臉識別外文翻譯—人臉識別技術(shù)綜述(原文).PDF
- 基于特征臉改進算法的人臉識別技術(shù)的研究.pdf
- 基于特征臉和多特征的人臉識別算法研究.pdf
評論
0/150
提交評論