2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、附錄英文原文及翻譯Stress Distribution In a Shear Wall – Frame StructureUsing Unstructured – Refined Finite Element MeshABSTRACTA semi-automatic algorithm for finite element analysis is presented to obtain the stress and strain di

2、stribution in shear wall-frame structures. In the study, a constant strain triangle with six degrees of freedom and mesh refinement - coarsening algorithms were used in Matlab® environment. Initially the proposed al

3、gorithm generates a coarse mesh automatically for the whole domain and the user refines this finite element mesh at required regions. These regions are mostly the regions of geometric discontinuities. Deformation, normal

4、 and shear stresses are presented for an illustrative example. Consistent displacement and stress results have been obtained from comparisons with widely used engineering software.Key Words: Shear wall, FEM, Unstructured

5、 mesh, Refinement.1.INTRODUCTIONIn the last two decades, shear walls became an important part of our mid and high rise residential buildings in Turkey. As part of an earthquake resistant building design, these walls are

6、placed in building plans reducing lateral displacements under earthquake loads so shear-wall frame structures are obtained. Since the 1960’s several approaches have been adopted to solve displacements and stress distribu

7、tion of shear wall structures. Continuous medium approaches, and frame analogy models are the examples of these approaches [1-4]. In the past and today, numerical solution methodsare the main effort area because of the a

8、ccuracy of solution and the ease of usage in 2D and 3D analysis of shear walls [5-7].Shear walls with openings, coupled shear walls and combined shear wall frame structures can be modeled as thin plates where the loading

9、 is uniformly distributed over the thickness, in the plane of the plate. This 2D domain can be subdivided into a finite number of geometrical shapes. In the finite element method (FEM), these simple shaped elements such

10、as triangles or quadrilaterals (in 2D) are called elements. The connection of these individual elements at nodes and along interelement boundaries covering the whole problem domain is called finite element mesh or grid.

11、In the literature meshes can be grouped into two main categories such as structured Figure 2. Constant strain triangular finite elementCST element has displacement functions and shape functions as follows,(1) ? ?? ? 3 3

12、2 2 1 13 3 2 2 1 1,,v N v N v N y x vu N u N u N y x u? ? ?? ? ?(2) ? ? ? ? ? ? ? ? ? ? y x x x y y y x y x A y x Ne2 3 2 3 2 3 3 2 1 21 , ? ? ? ? ? ?(3) ? ? ? ? ? ? ? ? ? ? y x x x y y y x y x A y x Ne3 1 3 1 3 1 1 3 2

13、21 , ? ? ? ? ? ?(4) ? ? ? ? ? ? ? ? ? ? y x x x y y y x y x A y x Ne1 2 1 2 1 2 2 1 3 21 , ? ? ? ? ? ?where 1 u , 2 u and 3 u nodal displacements in x direction corresponding to nodes 1, 2 and 3 respectively. 1 v , 2 v a

14、nd 3 v nodal displacements in y direction and 1 N , 2 N and 3 N are linear shape functions. x and y are the coordinates of corresponding nodes and e A is area of the element. In the finite element method, nodal displacem

15、ents are obtained from the solution of the linear system of equations, that is(5) f Ku ?where, K is stiffness matrix, u is nodal displacement vector, and f is nodal load vector. Stiffness matrix may be calculated as(6) ?

16、 ? ? ? SN C SN t A KTe ?where t is thickness of the element,(7) ? ??? ?? ?3 2 13 2 10 0 00 0 0N N NN N N Nand differential operator is,(8)? ? ? ???? ? ? ????????????x yy x S00and the elasticity matris is defined by(9)? ?

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論