版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、天津大學(xué)博士學(xué)位論文遺傳算法適應(yīng)值曲面及遺傳算法困難度分析姓名:李建武申請學(xué)位級別:博士專業(yè):管理科學(xué)與工程指導(dǎo)教師:李敏強20021001ABSTRACTGeneticalgorithms(GAs),asakindofheuristicsearchandoptimizationtechniques,havebeenappliedtomanydomainssuccessfullyHoweverafter“NoFreeLunch”(NFL
2、)theoremswereproposed,applicationsofGAswcrcimpactedTherefore,t11estudyonGAhardnesshasbeenpaidmoreandmoreattentionInaddifiontheconcept,“fitnesslandscapes”,whichcarlaefrombiologyhasbeenappliedtoGAs,andbecameanimportanttool
3、todescribethecharacteristicsofthefitnessspaceandtoanNyzetheperformanceofGASUnderthiscircumstanceswediscussedtheprinciplesoffitnesslandscapesofGAsandanalyzed吐leGAhardnessbasedonfitnesslandscapesFurthermoreweproposedsevera
4、lmethodstomeasureGAhardnessortosolvesomedi佑cultproblemsforGAsThemainContentsofthisdissertationareasfollows:1WereviewedtheoriginanddevelopmentofGAssummarizedcharacteristicsofGAsanalyzedtheresearchstatusabouttheprinciplesa
5、ndapplicationsofGAsandfurtherpointedoutsomeproblems,whichneededtobesolvedcurrentlⅥMeanwhile,weprobedintotheoriginofthenotion“fitnesslandscapes”anddiscusseditsapplicationstatusWealSOanalyzedthebackgrounddevelopmentandcurr
6、entsituationofthestudyonGAhardness2WeinvestigatedtheprinciplesofthefitnesslandscapeanditsapplicationtoGAsindetailFirstlyfromtheviewpointofgraphtheoryweanalyzedfitnesslandscapes,anddescribedtherandomwalkcorrelationfunctio
7、n,thenwededucedtheequationtocomputethecorrelationlengthSecondlyweperformedthetimeseriesanalysisfortherandomwalkmodelonthefitnesslandscapetodiscovermoreinformationaboutthefitnesslandscape,anddemonstratedthemodelingprocess
8、basedontheNK—landscapes111irdlyweproposedthecone(:ptofthefitnesslandscapeofschemata,andimplementedstatisticalanalysisforfitnesslandscapesofschemataLastlythedynamicfitnesslandscapewasanalyzedinbrief3Wjidentifiedsomefactor
9、swhichmaycauseGAhardnessAtthebeginningwediscussedtheNFLtheoremsandtheirsignificanceofthestudyonGAhardnessSubsequentlyweconcludedsomeimportantdefinitionsandtheoremsforGAdeceptiveproblems,andanalyzedschemadeceptiveness’inf
10、luenceonGAhardnessThen,weinvestigatedtheepistasisofGAsusingWaIshSchematransformandfurtherevaluatedtheepistasisorderforthecontinuousfunctionoptimizationproblemsMeanwhileforthestatisticalanalysismodelofepistasisintrodueedb
11、yDavidorwediscussedepistasisvarianceandepistasiscorrelation,andfurtherinducedtwotheorems,ofwhichwegavestrictmathematicproofAdditionallyseveraltestproblemswithepistasisforGAsweredescribedFinallywestudiedsystematicallysome
12、otherreasonsforGA—hardness,suchasmulti—modalfunctions,themggednessoffitnesslandscapes,selectionofgeneticoperators,prematureproblems,controlofgeneticparameters,etc一4WeprobedintosomemethodstomeasureGAhardnessFirstofa11weco
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遺傳算法概述遺傳算法原理遺傳算法的應(yīng)用
- 遺傳算法
- 遺傳算法研究及遺傳算法工具箱開發(fā).pdf
- 遺傳算法入門
- 并行遺傳算法
- 遺傳算法淺析
- 自適應(yīng)遺傳算法的研究.pdf
- 遺傳算法原理及應(yīng)用
- 自適應(yīng)混合遺傳算法研究.pdf
- 自適應(yīng)遺傳算法的研究及應(yīng)用.pdf
- 溫度重建-遺傳算法
- 遺傳算法matlab代碼
- 遺傳算法的應(yīng)用
- 遺傳算法研究綜述
- 量子遺傳算法改進算法研究.pdf
- 自適應(yīng)多位變異遺傳算法的實現(xiàn).pdf
- 自適應(yīng)遺傳算法的改進與研究.pdf
- 基于遺傳算法的自適應(yīng)圖像檢索.pdf
- 遺傳算法簡介及基于單親遺傳算法的配電網(wǎng)擴展規(guī)劃
- 遺傳算法和量子遺傳算法在物流系統(tǒng)優(yōu)化中的應(yīng)用.pdf
評論
0/150
提交評論