版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、河北工業(yè)大學(xué)碩士學(xué)位論文基于支持向量機的時空二維融合正常與異常狀態(tài)的流量預(yù)測姓名:劉思明申請學(xué)位級別:碩士專業(yè):道路與鐵道工程指導(dǎo)教師:李巧茹2010-12論文題目 II TRAFFIC FLOW IN NORMAL AND ABNORMAL PREDICTION USING TIME-SPACE FUSION MODEL BASED ON SUPPORT VECTOR MACHINES ABSTRACT With the high
2、-speed development of the national economy and the urbanization, urban transport development has been rapid progress. However, improvement of living standards of urban residents, the rapid growth of vehicle ownership, l
3、eading to between surge in road traffic and the limited road resources continue to intensify the contradiction causing a series of traffic problems, such as the more serious traffic congestion, traffic accidents and th
4、e environment pollution and so on. The development of domestic and international experience has shown over the years, any country or region can solve traffic congestion problems by large-scale road construction. Under
5、 current conditions, only the rational use and maximize exert the potential of urban road network, can be integrated and coordinated balance between vehicles and roads. The solution to this problem is to correctly eval
6、uate the basis of the current work status of urban road network, as defined by quantitative analysis of the reliability of calculations to evaluate the level of traffic. As one of the basic indicators of traffic engine
7、ering, traffic volume predict can not be ignored. Traffic predict for the current study generally ignored the interdependence at the same time between different sections. From the perspective of the entire road network,
8、 congestion or failure of the upstream and downstream sections, the section associated with will be affected. Therefore, reliability analysis which considered the relationship between sections is necessary. This paper
9、 presents a support vector machine (SVM) fusion of concurrent two-dimensional space-time predict method of traffic flow in two parallel system model to reduce the time cost. Also considered the relevance between time a
10、nd space, on two-dimensional space-time fusion, greatly improving the predict accuracy. It can be effectively evaluate the reliability of travel time to provide more accurate data to support. This paper analyzes the in
11、ternational issues of common urban transport firstly, and make a general description of the basic principles and requirements for the effective way of evaluation of transportation system currently--- network reliability
12、 analysis. As the reliability analysis of network traffic requires a lot of projections, which leads to the contents of this research - the state of normal and abnormal traffic flow predict. By researches the basic the
13、ory of SVM research and development, and selects the methods based on support vector machine regression model to predict the traffic flow under normal and abnormal in space-time two-dimensional fusion model, and compa
14、res with the results of multiple regression method under normal and abnormal state, you can visually see the two-dimensional fusion model based on support vector machine shows better performance. KEY WORDS: support vec
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于支持向量機的流量預(yù)測和狀態(tài)判別研究.pdf
- 基于支持向量機的刀具磨損狀態(tài)預(yù)測.pdf
- 基于支持向量機回歸的網(wǎng)絡(luò)流量預(yù)測.pdf
- 基于支持向量機的網(wǎng)絡(luò)流量預(yù)測研究.pdf
- 基于支持向量機的變壓器狀態(tài)評估與狀態(tài)預(yù)測研究.pdf
- 基于混沌時間序列分析與支持向量機的網(wǎng)絡(luò)流量預(yù)測.pdf
- 基于二維Gabor變換與支持向量機的人臉表情識別研究.pdf
- 基于支持向量機的網(wǎng)絡(luò)流量預(yù)測和資源調(diào)度.pdf
- 基于支持向量機結(jié)構(gòu)健康狀態(tài)趨勢預(yù)測研究.pdf
- 基于灰色最小二乘支持向量機的網(wǎng)絡(luò)流量預(yù)測系統(tǒng)設(shè)計與實現(xiàn).pdf
- 基于支持向量機的公路車流量數(shù)據(jù)分析與預(yù)測模型.pdf
- 基于改進支持向量機的網(wǎng)絡(luò)流量預(yù)測算法的研究.pdf
- 基于特征融合與支持向量機的豬前肢步態(tài)異常識別研究.pdf
- 基于支持向量機的圖像融合研究.pdf
- 基于支持向量機和混沌理論的壓縮機狀態(tài)預(yù)測方法研究.pdf
- 基于支持向量機的股市預(yù)測研究.pdf
- 基于支持向量機的股票預(yù)測研究.pdf
- 支持向量機在人體健康狀態(tài)預(yù)測中的研究與應(yīng)用.pdf
- 基于二維主成分分析和支持向量機的交通標志識別.pdf
- 基于支持向量機的風(fēng)速預(yù)測系統(tǒng).pdf
評論
0/150
提交評論