基于量子進(jìn)化RBF網(wǎng)絡(luò)的圖像識(shí)別.pdf_第1頁
已閱讀1頁,還剩57頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、如何合理高效地組織圖像數(shù)據(jù)、結(jié)合圖像特征,將人工智能及知識(shí)發(fā)現(xiàn)等技術(shù)合理地運(yùn)用于圖像分類中,是當(dāng)今計(jì)算機(jī)視覺研究領(lǐng)域的一個(gè)熱點(diǎn)問題。量子進(jìn)化算法以其諸多優(yōu)點(diǎn),如能夠更容易的在探索與開發(fā)之間取得平衡,具有種群規(guī)模小、收斂速度快、全局尋優(yōu)能力強(qiáng)等,而日益受到重視。本文將量子進(jìn)化算法用于RBF網(wǎng)絡(luò)(徑向基函數(shù)網(wǎng)絡(luò))的優(yōu)化當(dāng)中,并通過仿真驗(yàn)證了算法的有效性。本文的主要工作有:
   采用量子進(jìn)化算法對(duì)RBF網(wǎng)絡(luò)的參數(shù)及結(jié)構(gòu)進(jìn)行優(yōu)化。其中

2、參數(shù)包括RBF函數(shù)中心、權(quán)值以及方差,結(jié)構(gòu)的優(yōu)化是指獲得網(wǎng)絡(luò)的隱層和輸出層之間的部分鏈接,而不是全鏈接,經(jīng)過優(yōu)化后的網(wǎng)絡(luò)能降低RBF網(wǎng)絡(luò)在進(jìn)行圖像識(shí)別時(shí)候的時(shí)間復(fù)雜度。通過在Brodatz紋理圖像和SAR圖像數(shù)據(jù)中的實(shí)驗(yàn)表明,基于量子進(jìn)化的RBF網(wǎng)絡(luò)的圖像識(shí)別精度要明顯高于基于遺傳算法的RBF網(wǎng)絡(luò)。
   在紋理圖像的識(shí)別中,本文結(jié)合了小波變化的能量特征和灰度共生矩陣的特征;對(duì)于SAR圖像,本文結(jié)合了Contourlet變換域的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論