版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、粒子群優(yōu)化算法(Particle Swarm Optimization,簡(jiǎn)稱PSO)是由Kennedy和Eberhart于1995年提出的一種基于群智能(Swarm Intelligence)的演化計(jì)算技術(shù)。它是在鳥(niǎo)群、魚(yú)群和人類社會(huì)行為規(guī)律的啟發(fā)下提出的。粒子群優(yōu)化算法在函數(shù)優(yōu)化、神經(jīng)網(wǎng)絡(luò)訓(xùn)練、模式分類、模糊系統(tǒng)控制以及其它工程領(lǐng)域都得到廣泛地應(yīng)用。本文綜述了粒子群算法的基本思想和提出背景--群智能計(jì)算,詳細(xì)介紹了基本粒子群算法及其各
2、種改進(jìn)算法。本文主要將粒子群算法與進(jìn)化規(guī)劃相結(jié)合,在動(dòng)態(tài)優(yōu)化環(huán)境下給出一種改進(jìn)的粒子群算法。在不同動(dòng)態(tài)優(yōu)化環(huán)境下對(duì)算法的跟蹤效果進(jìn)行了實(shí)驗(yàn);在此基礎(chǔ)上,引入了種群熵的概念,分析了改進(jìn)的粒子群算法的種群多樣性與跟蹤效果的關(guān)系。
本文重點(diǎn)包括以下兩個(gè)方面:
(1)由于基本PSO方法種群多樣性損失過(guò)快,進(jìn)化過(guò)程中易于陷入局部極值,引起算法過(guò)早收斂,這就使基本PSO方法對(duì)動(dòng)態(tài)變化的極值點(diǎn)不能進(jìn)行及時(shí)有效的跟蹤。本文在
3、動(dòng)態(tài)優(yōu)化環(huán)境下給出一種改進(jìn)的粒子群算法,并在不同動(dòng)態(tài)環(huán)境下將這種方法與現(xiàn)有的幾種動(dòng)態(tài)優(yōu)化環(huán)境下的粒子群算法在跟蹤效果上進(jìn)行了對(duì)比。實(shí)驗(yàn)表明,改進(jìn)的粒子群方法有很強(qiáng)的適應(yīng)動(dòng)態(tài)優(yōu)化環(huán)境的能力,能夠?qū)?dòng)態(tài)變化的最優(yōu)點(diǎn)進(jìn)行有效的跟蹤,無(wú)論在跟蹤速度還是跟蹤精度上都比其它方法有明顯提高。
(2)在動(dòng)態(tài)優(yōu)化環(huán)境下,對(duì)現(xiàn)有粒子群算法的種群多樣性進(jìn)行了分析,并對(duì)改進(jìn)的粒子群算法的種群多樣性與跟蹤效果的關(guān)系進(jìn)行了實(shí)驗(yàn)。實(shí)驗(yàn)表明種群中粒子運(yùn)動(dòng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 云計(jì)算環(huán)境下基于改進(jìn)粒子群算法的動(dòng)態(tài)資源調(diào)度研究.pdf
- 面向動(dòng)態(tài)環(huán)境的粒子群算法研究.pdf
- 動(dòng)態(tài)搜索空間策略下的粒子群算法改進(jìn)及其拓展研究.pdf
- 改進(jìn)的粒子群優(yōu)化算法.pdf
- 粒子群及量子行為粒子群優(yōu)化算法的改進(jìn)研究.pdf
- 粒子群算法改進(jìn)方法研究.pdf
- 改進(jìn)粒子群優(yōu)化算法的研究.pdf
- 關(guān)于粒子群算法改進(jìn)的研究.pdf
- 粒子群算法的研究及改進(jìn).pdf
- 粒子群優(yōu)化算法及其改進(jìn).pdf
- 改進(jìn)的粒子群優(yōu)化算法的研究.pdf
- 粒子群優(yōu)化算法的改進(jìn)研究.pdf
- 粒子群算法的改進(jìn)方法研究.pdf
- 基于改進(jìn)粒子群優(yōu)化算法的MES車間動(dòng)態(tài)調(diào)度研究.pdf
- 電力系統(tǒng)動(dòng)態(tài)經(jīng)濟(jì)調(diào)度的改進(jìn)文化粒子群算法.pdf
- 粒子群算法----粒子群算法簡(jiǎn)介
- 粒子群算法----粒子群算法簡(jiǎn)介
- 粒子群優(yōu)化算法的分析及改進(jìn).pdf
- 粒子群算法----粒子群算法簡(jiǎn)介
- 粒子群優(yōu)化算法的改進(jìn)及其應(yīng)用.pdf
評(píng)論
0/150
提交評(píng)論