加權(quán)支持向量機(jī)在可靠性預(yù)測(cè)中的應(yīng)用.pdf_第1頁
已閱讀1頁,還剩63頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、電子科技大學(xué)碩士學(xué)位論文加權(quán)支持向量機(jī)在可靠性預(yù)測(cè)中的應(yīng)用姓名:王鑫申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):電路與系統(tǒng)指導(dǎo)教師:楊波20080501ABSTRACTABSTRACTAsthedevelopingofmodernindustrythereliabilityofproductshasbecomemoreandmoreimportantAprecisereliabilitypredictionofanindustrialmanufacture

2、Canhelpdiscoveraseriesofproblemsthatmaybefoundduringitslifetimeassoonaspossible,whichmayleadtoaneasiercontroltothelifecycleTherefore,theresearchfortheprecisereliabilitypredictionissignificantinmodernsystemengineeringTrad

3、itionalfunctionsinreliabilitypredictionaremainlyconstitutedofthemodelsthosehavealreadygotefficientimplementationsinthefieldofnonlinearregression,includingtheLifecycleDistributionModel,theFaultTreeAnalysis(FTA),theMonteCa

4、rloModelandtheArtificialNeuralNetwork(ANN),eta1TheANN,whichmaybeespeciallymentioned,hasbecomeanimportantfieldthatabsorbsglobalresearchers’attentionsforitsgreatprecisionofsamplingfit,andthushasgotmanyimprovedmodelsHowever

5、theANNstillremainssomelimitationsinitsowntheoryTheprincipleofminimizingtheempiricalrisk,whichleadstoan“overfit’’thatlimitstheabilityofgeneralizationoftrainingmachine,isthemainoneOntheotherhand,trainingforANNneedsalotofsa

6、mpleswhilethesamplesinarealworldmayusuallymeetalimitSo,inmostsituations,there’SnosatisfyingprecisionforpredictioninanANNwithoutenoughsamplesSupportVectorMachine(SVM),whichismainlyusedinpatternrecognitionproblemsatthebegi

7、nning,isafreshmachinestudymethodputforwardbyVapnikusingstatisticsprinciplesinearly1990sAstheimportof£insensitivelossfunction,SVMhasalreadybeenextendedintheregressionestimationofnonlinearsystems,andhasrepresenteditsgoodst

8、udyabilityinregressionunderthesituationofsolvingsmallsampleSVMmakesminimizingofstructureriskasitscriteria,andgetsbothsatisfyingprecisionandgreatextendingabilityindatafittingInaddition,thesolutionsofSVMtransformtothesolut

9、ionsofquadraticprogrammingproblemsatlastSVMisthustheonlysolutionandtheglobaloptimalsolutiontooAspeople’SindepthstudyingofSVMtheorynewSVMswerebeingbuiltInthepredictionofreliabilitydatasampledindifferenttimemadedifferentef

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論